, Volume 47, Issue 2, pp 119–138 | Cite as

Detecting Holes and Antiholes in Graphs

  • Stavros D. Nikolopoulos
  • Leonidas Palios


In this paper we study the problems of detecting holes and antiholes in general undirected graphs, and we present algorithms for these problems. For an input graph G on n vertices and m edges, our algorithms run in O(n + m2) time and require O(n m) space; we thus provide a solution to the open problem posed by Hayward et al. asking for an O(n4)-time algorithm for finding holes in arbitrary graphs. The key element of the algorithms is the use of the depth-first-search traversal on appropriate auxiliary graphs in which moving between any two adjacent vertices is equivalent to walking along a P4 (i.e., a chordless path on four vertices) of the input graph or on its complement, respectively. The approach can be generalized so that for a fixed constant k ≥ 5 we obtain an O(nk-1)-time algorithm for the detection of a hole (antihole resp.) on at least k vertices. Additionally, we describe a different approach which allows us to detect antiholes in graphs that do not contain chordless cycles on five vertices in O(n + m2) time requiring O(n + m) space. Again, for a fixed constant k ≥ 6, the approach can be extended to yield O(nk-2)-time and O(n2)-space algorithms for detecting holes (antiholes resp.) on at least k vertices in graphs which do not contain holes (antiholes resp.) on k - 1 vertices. Our algorithms are simple and can be easily used in practice. Finally, we also show how our detection algorithms can be augmented so that they return a hole or an antihole whenever such a structure is detected in the input graph; the augmentation takes O(n + m) time and space.


Adjacency Matrix Space Complexity Undirected Graph Time Algorithm Input Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of Computer Science, University of Ioannina, P.O. Box 1186, GR-45110IoanninaGreece

Personalised recommendations