, Volume 34, Issue 4, pp 429–448 | Cite as

Quantum Complexities of Ordered Searching, Sorting, and Element Distinctness

  •  Hoyer
  •  Neerbek
  •  Shi

Abstract. We consider the quantum complexities of the following three problems: searching an ordered list, sorting an un-ordered list, and deciding whether the numbers in a list are all distinct. Letting N be the number of elements in the input list, we prove a lower bound of (1/π )(ln(N )-1) accesses to the list elements for ordered searching, a lower bound of Ω(N logN ) binary comparisons for sorting, and a lower bound of
binary comparisons for element distinctness. The previously best known lower bounds are 1/12 log 2 (N) - O (1) due to Ambainis, Ω(N) , and
, respectively. Our proofs are based on a weighted all-pairs inner product argument.

In addition to our lower bound results, we give an exact quantum algorithm for ordered searching using roughly 0.631 log 2 (N) oracle accesses. Our algorithm uses a quantum routine for traversing through a binary search tree faster than classically, and it is of a nature very different {from} a faster exact algorithm due to Farhi, Goldstone, Gutmann, and Sipser.

Key words. Quantum computation, Searching, Sorting, Element distinctness, Lower bound. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 2002

Authors and Affiliations

  •  Hoyer
    • 1
  •  Neerbek
    • 2
  •  Shi
    • 3
  1. 1.Department of Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4.
  2. 2.Department of Computer Science, University of Aarhus, DK-8000 Arhus C, Denmark.
  3. 3.Department of Computer Science, Princeton University, Princeton, NJ 08544, USA.

Personalised recommendations