Computer Science - Research and Development

, Volume 31, Issue 3, pp 135–140 | Cite as automatically identifying and optimizing energy-efficient building designs

Status quo and outlook
  • Stefan Fenz
  • Johannes Heurix
  • Thomas Neubauer
  • A. Min Tjoa
  • Neda Ghiassi
  • Ulrich Pont
  • Ardeshir Mahdavi
Special Issue Paper


A central goal of European and national climate and energy programs is to reduce the greenhouse gas emission of buildings. SEMERGY is a web-based optimization environment, which supports users in decision-making regarding energy-efficient building designs. Taking the user-specified criteria investment costs, final energy demand of the building, and environmental impact of used building products into account, the system identifies efficient building designs and retrofit options. The following steps were taken: (i) development of a comprehensive building data model, (ii) creation of an ontology of linked building product data, (iii) development of a rule-based system to automatically identify valid construction alternatives for building components, (iv) development of a multi-objective optimization procedure, and (v) creation of a web-based Graphical User Interface to enable data entry and user interaction. The present contribution provides an overview of the progress made in the above mentioned domains.


Building design Energy efficiency  Optimization 



The SEMERGY project is funded under the FFG Research Studio Austrian Program (grant No. 832012) by the Austrian Federal Ministry of Economy, Family and Youth (BMWFJ). In addition to the authors, the SEMERGY team includes A. Anjomshoaa, K. Hammerberg, I. Merz, C. Sustr, F. Shayeganfar, M. Taheri, D. Wolosiuk and A. Wurm.


  1. 1.
    United Nations (1998) Kyoto protocol to the United Nations framework convention on climate change. Online:, Last visited Jun 2014
  2. 2.
    European Union (2003) Directive 2002/91/EC of the European Parliament and of the Council of 16 Dec 2002 on the energy performance of buildings. Official Journal of the European CommunitiesGoogle Scholar
  3. 3.
    Hensen J, Djunaedy E, Radošević M, Yahiaoui A (2004) Building performance simulation for better design: some issues and solutions. In: Proceedings of the 21th conference on passive and low energy architecture, EindhovenGoogle Scholar
  4. 4.
    Domeshek EA, Kolodner JL, Zimring CM (1994) The design of tool kit for case-based design aids. In: Gero JS, Sudweeks F (eds) Artificial Intelligence in Design’94. Kluwer Academic Publishers, Alphen aan den Rijn, pp 109–126Google Scholar
  5. 5.
    Ghiassi N, Shayeganfar F, Pont U, Mahdavi A, Fenz S, Heurix J, Anjomshoaa A, Neubauer T, Tjoa AM (2012) Improving the usability of energy simulation applications in processing common building performance inquiries. In: Sikula O, Hirs J (eds) Simulace Budov a Techniky Prostredi. Ceska Technika-nakladatelstvi CVUT, BrnoGoogle Scholar
  6. 6.
    Maile T, Fischer M, Bazjanac V (2007) Building energy performance simulation tools: a life-cycle and interoperable perspective. Stanford University, Center for Integrated Facility EngineeringGoogle Scholar
  7. 7.
    Mahdavi A, Pont U, Shayeganfar F, Ghiassi N, Anjomshoaa A, Fenz S, Heurix J, Neubauer T, Tjoa AM (2012) SEMERGY: semantic web technology support for comprehensive building design assessment. In: Gudnason G, Scherer R (eds) eWork and eBusiness in architecture, engineering and construction. Taylor & Francis, Reykjavík, pp 363–370CrossRefGoogle Scholar
  8. 8.
    Mahdavi A, Pont U, Shayeganfar F, Ghiassi N, Anjomshoaa A, Fenz S, Heurix J, Neubauer T, Tjoa AM (2012) Exploring the utility of semantic web technology in building performance simulation. In: Proceedings of BauSIM 2012: Gebäudesimulation auf den Größenskalen Bauteil, Raum, Gebäude, Stadtquartier, Berlin, pp 58–64Google Scholar
  9. 9.
    Ghiassi N, Shayeganfar F, Pont U, Mahdavi A, Fenz S, Heurix J, Anjomshoaa A, Neubauer T, Tjoa AM (2013) A comprehensive building model for performance-guided decision support. CESBP 2013, ViennaGoogle Scholar
  10. 10.
    Heurix J, Fenz S, Anjomshoaa A, Neubauer T, Tjoa AM, Taheri M, Shayeganfar F, Pont U, Ghiassi N, Sustr C, Mahdavi A (2013) Optimization in the SEMERGY environment: Multi-objective optimization for sustanable building design and retrofit. CESBP 2013, ViennaGoogle Scholar
  11. 11.
    Hammerberg K, Jain V, Ghiassi N, Mahdavi A (2013) Generalizing roof geometry from minimal user input for building performance simulation. CESBP 2013, ViennaGoogle Scholar
  12. 12.
    Wolosiuk D, Ghiassi N, Pont U, Shayeganfar F, Mahdavi A, Fenz S, Heurix J, Anjomshoaa A, Tjoa AM (2014) SEMERGY: Performance-Guided Building Design and Refurbishment within a Semantically Augmented Optimization Environment”. Advanced Materials Research, vol. 899, pp. 589–595, Switzerland: Trans Tech PublicationsGoogle Scholar
  13. 13.
    Ghiassi N, Pont U, Mahdavi A, Heurix J, Fenz S (2014) Efficient building design model generation and evaluation: the SEMERGY approach. In: 30th International PLEA Conference, AhmadabadGoogle Scholar
  14. 14.
    Pont U, Ghiassi N, Shayeganfar F, Mahdavi A, Fenz S, Heurix J, Anjomshoaa A, Tjoa AM (2014) SEMERGY: Utilizing Semantic web technologies for performance guided building design optimization. In: 10th European Conference on Product & Process Modelling, ViennaGoogle Scholar
  15. 15.
    gbXML (2014), Last visited Feb 2014

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stefan Fenz
    • 1
  • Johannes Heurix
    • 1
  • Thomas Neubauer
    • 1
  • A. Min Tjoa
    • 1
  • Neda Ghiassi
    • 2
  • Ulrich Pont
    • 2
  • Ardeshir Mahdavi
    • 2
  1. 1.Institute of Software Technology and Interactive SystemsVienna University of TechnologyViennaAustria
  2. 2.Department of Building Physics and Building EcologyVienna University of TechnologyViennaAustria

Personalised recommendations