Computer Science - Research and Development

, Volume 30, Issue 2, pp 177–186

Evaluating the performance and energy efficiency of the COSMO-ART model system

  • Joseph Charles
  • William Sawyer
  • Manuel F. Dolz
  • Sandra Catalán
Special Issue Paper
  • 132 Downloads

Abstract

In this paper we investigate the energy footprint and performance profiling of COSMO-ART on various HPC platforms. This model is an extension of the operational weather forecast model of the German weather service (DWD), developed for the evaluation of the interactions of reactive gases and aerosol particles with the state of atmosphere at the regional scale. Different measurement devices and energy-aware techniques are described to evaluate both time and energy to solution of the considered application and to gain detailed insights into power and performance requirements. Our motivation is to improve corresponding code sections to sustain performance while minimizing energy-to-solution. This preliminary work sets the basis for subsequent studies to tackle challenges related to energy efficient high performance computing in the framework of the Exa2Green project (EU FET Project, http://exa2green.eu/).

Keywords

High performance computing  Energy-aware computing Numerical weather prediction Atmospheric chemistry Aerosol modeling  Benchmark analysis COSMO-ART coupled model Power-performance profiling and tracing tools  Energy-saving techniques 

References

  1. 1.
    EU FET Project FP7 318793 Exa2Green. http://exa2green.eu/
  2. 2.
    High performance and high productivity computing. http://www.hp2c.ch/
  3. 3.
    Ackermann IJ et al (1998) Modal aerosol dynamics model for Europe: development and first applications. Atmos Environ 32(17):2981–2999CrossRefGoogle Scholar
  4. 4.
    Athanasopoulou E et al (2013) Modeling the meteorological and chemical effects of secondary organic aerosol during an EUCAARI campaign. Atmos Chem Phys 13:625–645CrossRefGoogle Scholar
  5. 5.
    Baldauf M et al (2011) Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities. Mon Weather Rev 139(12):3887–3905CrossRefGoogle Scholar
  6. 6.
    Bangert M et al (2012) Saharan dust event impacts on cloud formation and radiation over Western Europe. Atmos Chem Phys 12:4045–4063CrossRefGoogle Scholar
  7. 7.
    Bangert M, Kottmeier C, Vogel B, Vogel H (2011) Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model. Atmos Chem Phys 11:4411–4423CrossRefGoogle Scholar
  8. 8.
    Barreda M et al (2013) A framework for power-performance analysis of parallel scientific applications. In: Third International conference on smart grids, green communications and IT energy-aware technologies-energy, pp 114–119Google Scholar
  9. 9.
    Barroso LA, Hölzle U (2007) The case for energy-proportional computing. Computer 40(12):33–37CrossRefGoogle Scholar
  10. 10.
    Cumming B, Fourestey G, Fuhrer O, Fatica M, Schulthess TC (2014) Application centric energy-efficiency study of distributed multi-core and hybrid CPU-GPU systems. submittedGoogle Scholar
  11. 11.
    Damian V, Sandu A, Damian M, Potra F, Carmichael G (2002) The kinetic preprocessor KPP-a software environment for solving chemical kinetics. Comput Chem Eng 26(11):1567–1579CrossRefGoogle Scholar
  12. 12.
    Diouri MEM, Dolz MF, Glück O, Lefèvre L, Alonso P, Catalán S, Mayo R, Quintana-Ortí ES (2014) Assessing power monitoring approaches for energy and power analysis of computers. J Sustain Comput Inf Syst 4(2):68–82Google Scholar
  13. 13.
    Doms G (2011) A description of the nonhydrostatic regional COSMO-model. Part I: dynamics and numericsGoogle Scholar
  14. 14.
    Fountoukis C, Nenes A (2007) ISORROPIA II: a computationally efficient thermodynamic equilibrium model for \(K^{+}- Ca^{2+}-Mg^{2+}-NH^{+}-Na^{+}-SO2^{-}-NO^{-}-Cl^{-}-HO\) aerosols. Atmos Chem Phys 7:4639–4659Google Scholar
  15. 15.
    Geiger H, Barnes I, Bejan I, Benter T, Spittler M (2003) The tropospheric degradation of isoprene: an updated module for the regional atmospheric chemistry mechanism. Atmos Environ 37(11):1503–1519CrossRefGoogle Scholar
  16. 16.
    Gysi T, Fuhrer O, Osuna C, Bianco M, Schulthess T (2014) Stella: a domain-specific language and tool for structured grid methods. submittedGoogle Scholar
  17. 17.
    IPCC - Intergovernmental Panel on Climate Change (2013) Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  18. 18.
    Knote C, Brunner D (2013) An advanced scheme for wet scavenging and liquid-phase chemistry in a regional online-coupled chemistry transport model. Atmos Chem Phys 13: 1177–1192Google Scholar
  19. 19.
    Knote C et al (2011) Towards an online-coupled chemistry-climate model: evaluation of trace gases and aerosols in COSMO-ART. Geosci Model Dev 4(4):1077–1102CrossRefGoogle Scholar
  20. 20.
    Lapillonne X, Fuhrer O (2014) Using compiler directives to port large scientific applications to GPUs: an example from atmospheric science. Parallel Process Lett 24(1):1450003CrossRefMathSciNetGoogle Scholar
  21. 21.
    Lee LA et al (2013) The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei. Atmos Chem Phys 13:8879–8914CrossRefGoogle Scholar
  22. 22.
    Lundgren K, Vogel B, Vogel H, Kottmeier C (2013) Direct radiative effects of sea salt for the mediterranean region at conditions of low to moderate wind speeds. J Geophys Res 118(4):1906–1923CrossRefGoogle Scholar
  23. 23.
    Mann GW et al (2013) Intercomparison and evaluation of aerosol microphysical properties among AeroCom global models of a range of complexity. Atmos Chem Phys 13:30841–30928CrossRefGoogle Scholar
  24. 24.
    Myhre G et al (2013) Radiative forcing of the direct aerosol effect from Aerocom phase II simulations. Atmos Chem Phys 13:1853–1877CrossRefGoogle Scholar
  25. 25.
    Padoin EL et al (2013) Evaluating application performance and energy consumption on hybrid CPU+GPU architecture. Clust Comput 16(3):511–525CrossRefGoogle Scholar
  26. 26.
    Randles CA et al (2013) Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom radiative transfer experiment. Atmos Chem Phys 13:2347–2379CrossRefGoogle Scholar
  27. 27.
    Riemer N, Vogel H, Vogel B (2004) Soot aging time scales in polluted regions during day and night. Atmos Chem Phys 4:1885–1893CrossRefGoogle Scholar
  28. 28.
    Riemer N, Vogel H, Vogel B, Fiedler F (2003) Modeling aerosols on the mesoscale-\(\gamma \): treatment of soot aerosol and its radiative effects. J Geophys Res 108(19):4601–4616Google Scholar
  29. 29.
    Ritter B, Geleyn JF (1992) A comprehensive scheme for numerical weather prediction models with potential applications in climate simulations. 120(Monthly Weather Review):303–305Google Scholar
  30. 30.
    Rosenfeld D, Wood R, Donner LJ, Sherwood SC (2013) Aerosol cloud-mediated radiative forcing: highly uncertain and opposite effects from shallow and deep clouds. In: Climate science for serving society: research, modelling and prediction priorities, pp 105–149Google Scholar
  31. 31.
    Seifert A, Beheng KD (2006) A two-moment cloud microphysics parameterization for mixed-phase clouds. part 1: model description. Meteorol Atmos Phys 92(1–2):45–66CrossRefGoogle Scholar
  32. 32.
    Sherwood SC et al (2013) Climate processes: clouds, aerosols and dynamics. In: Climate science for serving society: research, modelling and prediction priorities, pp 73–103Google Scholar
  33. 33.
    Stanelle T, Vogel B, Vogel H, Bäumer D, Kottmeier C (2010) Feedback between dust particles and atmospheric processes over West Africa during dust episodes in March 2006 and June 2007. Atmos Chem Phys 10(22):10771–10788CrossRefGoogle Scholar
  34. 34.
    Stier P et al (2013) Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study. Atmos Chem Phys 13:3245–3270Google Scholar
  35. 35.
    Stockwell WR, Middleton P, Chang JS, Tang X (1990) The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J Geophys Res 95(10):16343–16367Google Scholar
  36. 36.
    Vogel B et al (2009) The comprehensive model system COSMO-ART: radiative impact of aerosol on the state of the atmosphere on the regional scale. Atmos Chem Phys Discus 9(4):14483–14528CrossRefGoogle Scholar
  37. 37.
    Vogel B, Fiedler F, Vogel H (1995) Influence of topography and biogenic volatile organic compounds emission in the state of Baden-Württemberg on ozone concentrations during episodes of high air temperatures. J Geophys Res 100(11):22907–22928Google Scholar
  38. 38.
    Vogel B, Hoose C, Vogel H, Kottmeier C (2006) A model of dust transport applied to the dead sea area. Meteorologische Zeitschrift 15(6):611–624CrossRefGoogle Scholar
  39. 39.
    Vogel H, Pauling A, Vogel B (2008) Numerical simulation of birch pollen dispersion with an operational weather forecast system. Int J Biometeorol 52(8):805–814CrossRefGoogle Scholar
  40. 40.
    Wittmann M, Hager G, Zeiser T, Treibig J, Wellein G (2013) An analysis of energy-optimized lattice-Boltzmann CFD simulations from the chip to the highly parallel level. CoRR abs/1304.7664Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Joseph Charles
    • 1
  • William Sawyer
    • 1
  • Manuel F. Dolz
    • 2
  • Sandra Catalán
    • 3
  1. 1.Swiss National Supercomputing Centre (CSCS)LuganoSwitzerland
  2. 2.Department of InformaticsUniversity of Hamburg (UHAM)HamburgGermany
  3. 3.Jaume I University of Castellón (UJI)CastellónSpain

Personalised recommendations