On-The-Fly computing: automatic service discovery and composition in heterogeneous domains

  • Zille HumaEmail author
  • Christian Gerth
  • Gregor Engels
Special Issue Paper


In software markets of the future, customer-specific software will be developed on demand based on distributed software and hardware services. Based on a customer-specific request, available service offers have to be discovered and composed into sophisticated IT services that fulfill the customer’s request. A prerequisite of this vision are rich service descriptions, which comprise structural as well as behavioral aspects of the services, otherwise an accurate service discovery and composition is not possible. However, automatic matching of service requests and offers specified in rich service descriptions for the purpose of service discovery is a complex task, due to the multifaceted heterogeneity of the service partners. This heterogeneity includes the use of different specification languages, different underlying ontologies, or different levels of granularity in the specification itself. In this article, we present a comprehensive approach for service discovery and composition, which overcomes the underlying heterogeneity of the service partners. Based on a realistic case study of our industrial partner from the e-tourism domain, we first introduce an automatic matching mechanism for service requests and offers specified in a rich service description language. In addition, we propose an automatic service composition approach, which determines possible service compositions by composing the service protocols through a composition strategy based on labeled transition systems.


Heterogeneous service description Automatic service discovery and composition Behavioral matching Heterogeneity resolution 


  1. 1.
    W3C (2007) Web Service Description Language (WSDL).
  2. 2.
    Studer R, Benjamins VR, Fensel D (1998) Knowledge engineering: principles and methods. Data Knowl Eng 25(1–2):161–197CrossRefGoogle Scholar
  3. 3.
    Haller A, Cimpian E, Mocan A, Oren E, Bussler C (2005) WSMX—a semantic service-oriented architecture. In: IEEE international conference on web services (ICWS’05). IEEE Computer Society, pp 321–328Google Scholar
  4. 4.
    LSDIS Lab (2004) Web service semantics.
  5. 5.
    OWL-S Coalition (2006) OWL-based web service ontology.
  6. 6.
    Huma Z, Gerth C, Engels G, Juwig O (2012b) UML-based rich service description and discovery in heterogeneous domains. In: Proceedings of the forum at the CAiSE’12 conference on advanced information systems engineering,, CEUR workshop proceedings, vol 855, pp 90–97Google Scholar
  7. 7.
    Huma Z, Gerth C, Engels G, Juwig O (2012a) Towards an automatic service discovery for UML-based rich service descriptions. In: Proceedings of the 15th international conference on model driven engineering languages and systems (MODELS’12), LNCS, vol 7590. Springer, Berlin, pp 709–725Google Scholar
  8. 8.
    Huma Z, Gerth C, Engels G, Juwig O (2013) Automated service discovery and composition for On-the-Fly SOAs. Tech. Rep. TR-RI-13-333, University of Paderborn, Germany.
  9. 9.
    Object Management Group (OMG) (2009) Unified modeling language (UML)—superstructure, version 2.3.
  10. 10.
    de Bruijn J, Lausen H, Polleres A, Fensel D (2006) The web service modeling language WSML: an overview. In: Sure Y, Domingue J (eds) ESWC, LNCS, vol 4011. Springer, Berlin, pp 590–604Google Scholar
  11. 11.
    Lohmann M (2006) Kontraktbasierte Modellierung, Implementierung und Suche von Komponenten in serviceorientierten Architekturen. PhD thesis, University of PaderbornGoogle Scholar
  12. 12.
    Noy NF (2004) Semantic integration: a survey of ontology-based approaches. SIGMOD Record 33:65–70CrossRefGoogle Scholar
  13. 13.
    Miller GA (1995) WordNet: a lexical database for English. Commun ACM 38(11):39–41CrossRefGoogle Scholar
  14. 14.
    Mendes PN, Jakob M, Bizer C (2012) DBpedia for NLP: a multilingual cross-domain knowledge base. In: Proceedings of the eight international conference on language resources and evaluation (LREC’12), IstanbulGoogle Scholar
  15. 15.
    Schwichtenberg S (2013) Ontology-based normalization and matching of rich service descriptions. Master’s thesis, University of PaderbornGoogle Scholar
  16. 16.
    Euzenat J, Shvaiko P (2007) Ontology matching, vol 18. Springer, BerlinGoogle Scholar
  17. 17.
    Shvaiko P, Euzenat J (2013) Ontology matching: state of the art and future challenges. IEEE Trans Knowl Data Eng 25(1):158–176CrossRefGoogle Scholar
  18. 18.
    European Bioinformatics Institute (2011) Experimental Factor Ontology Tools.
  19. 19.
    Hausmann JH, Heckel R, Lohmann M (2005) Model-based development of web service descriptions enabling a precise matching concept. Int J Web Services Res 2(2):67–85CrossRefGoogle Scholar
  20. 20.
    Bernardi S, Donatelli S, Merseguer J (2002) From UML sequence diagrams and statecharts to analysable petri net models. In: Proceedings of the 3rd international workshop on software and performance. ACM, pp 35–45Google Scholar
  21. 21.
    Hausmann JH (2005) Dynamic meta modeling: a semantics description technique for visual modeling languages. PhD thesis, University of PaderbornGoogle Scholar
  22. 22.
    Küster JM, Stehr J (2003) Towards explicit behavioral consistency concepts in the UML. In: Proceedings of the 2nd international workshop on scenarios and state machines: models, algorithms and tools, PortlandGoogle Scholar
  23. 23.
    DeMarco T (1979) Structured analysis and system specification. Prentice Hall PTRGoogle Scholar
  24. 24.
    Cicalese CDT, Rotenstreich S (1999) Behavioral specification of distributed software component interfaces. IEEE Comput 32(7):46–53.
  25. 25.
    D’Souza DF, Wills AC (1998) Objects, Components, and Frameworks with UML: The Catalysis Approach. Addison-Wesley Professional, Addison-Wesley Object Technology SeriesGoogle Scholar
  26. 26.
    Glinz M (2007) On non-functional requirements. In: Proceedings of 15th IEEE international requirements engineering conference (RE ’07), pp 21–26Google Scholar
  27. 27.
    Tsui F, Karam O (2010) Essentials of software engineering. Jones & Bartlett LearningGoogle Scholar
  28. 28.
    Sabou M, Richards D, van Splunter S (2003) An experience report on using DAML-SGoogle Scholar
  29. 29.
    Atkinson C, Bostan P, Brenner D, Falcone G, Gutheil M, Hummel O, Juhasz M, Stoll D (2008) Modeling components and component-based systems in kobra. In: Rausch A, Reussner R, Mirandola R, Plasil F (eds) The common component modeling example, LNCS, vol 5153. Springer, Berlin, pp 54–84Google Scholar
  30. 30.
    Becker S, Brogi A, Gorton I, Overhage S, Romanovsky A, Tivoli M (2006) Towards an engineering approach to component adaptation. In: Reussner RH, Stafford JA, Szyperski CA (eds) Architecting systems with trustworthy components, LNCS, vol 3938. Springer, Berlin, pp 193–215Google Scholar
  31. 31.
    Brown AW, Wdlnau KC (1996) Engineering of component-based systems. In: Proceedings of 2nd IEEE international conference on engineering of complex computer systems (ICECCS’96), pp 414–422Google Scholar
  32. 32.
    Mätzel KU, Schnorf P (1997) Dynamic component adaptation. Tech. rep., Ubilab Technical Report 97.6Google Scholar
  33. 33.
    Allen R, Garlan D (1997) A formal basis for architectural connection. ACM Trans Softw Eng Methodol 6(3):213–249CrossRefGoogle Scholar
  34. 34.
    Schmidt HW, Reussner RH (2002) Generating adapters for concurrent component protocol synchronisation. In: Proceedings of the IFIP TC6/WG6.1 5th international conference on formal methods for open object-based distributed systems V (FMOODS’02). Kluwer, B.V., Deventer, pp 213–229Google Scholar
  35. 35.
    Yellin DM, Strom RE (1997) Protocol specifications and component adaptors. ACM Trans Program Lang Syst 19(2):292–333Google Scholar
  36. 36.
    Küster J, Stroop J (2001) Consistent design of embedded real-time systems with UML-RT. In: Proceedings of fourth IEEE international symposium on object-oriented real-time distributed computing. IEEE Computer Society, pp 31–40Google Scholar
  37. 37.
    Moffett Y, Beaulieu A, Dingel J (2011) Verifying UML-RT protocol conformance using model checking. In: Proceedings of 14th international conference on model driven engineering languages and systems (MODELS’11), LNCS, vol 6981. Springer, Berlin, pp 410–424Google Scholar
  38. 38.
    Shigo O, Okawa A, Kato D (2006) Constructing behavioral state machine using interface protocol specification. In: Proceedings of the XIII Asia Pacific software engineering conference (APSEC’06). IEEE Computer Society, pp 191–198Google Scholar
  39. 39.
    Both A, Zimmermann W (2008) Automatic protocol conformance checking of recursive and parallel BPEL systems. In: Proceedings of the 2008 sixth European conference on web services (ECOWS’08). IEEE Computer Society, pp 81–91Google Scholar
  40. 40.
    Cavallaro L, Nitto E, Pradella M (2009) An automatic approach to enable replacement of conversational services. In: Baresi L, Chi CH, Suzuki J (eds) ICSOC-ServiceWave ’09. LNCS, vol 5900. Springer, Berlin, pp 159–174Google Scholar
  41. 41.
    Motahari Nezhad HR, Benatallah B, Martens A, Curbera F, Casati F (2007) Semi-automated adaptation of service interactions. In: Proceedings of the 16th international conference on world wide web (WWW’07). ACM, pp 993–1002Google Scholar
  42. 42.
    Pathak J, Basu S, Honavar V (2006b) Modeling web services by iterative reformulation of functional and non-functional requirements. In: Proceedings of the 4th international conference on service-oriented computing (ICSOC’06), LNCS, vol 4294. Springer, Berlin, pp 314–326Google Scholar
  43. 43.
    Poizat RMP, Salaün G (2008) Adaptation of service protocols using process algebra and On-the-Fly reduction techniques. In: Bouguettaya A, Krüger I, Margaria T (eds) Proceedings of international conference on service oriented computings (ICSOC’08), LNCS, vol 5364. Springer, Berlin, pp 84–99Google Scholar
  44. 44.
    Spanoudaki G, Zisman A (2010) Discovering services during service-based system design using UML. IEEE Trans Softw Eng 36(3):371–389CrossRefGoogle Scholar
  45. 45.
    Mukhija A, Rosenblum DS, Dingwall-Smith A (2007) Dino: dynamic and adaptive composition of autonomous services. Department of Computer Science, University College London, London, White paperGoogle Scholar
  46. 46.
    Klusch M, Kaufer F (2009) WSMO-MX: a hybrid semantic web service matchmaker. Web Intell Agent Syst 7:23–42Google Scholar
  47. 47.
    Rao J, Su X (2004) A survey of automated web service composition methods. In: Proceedings of the first international conference on semantic web services and web process composition (SWSWPC’04), vol 3387. Springer, Berlin, pp 43–54Google Scholar
  48. 48.
    Bartalos P, Bieliková M (2011) Automatic dynamic web service composition: a survey and problem formalization. Comput Inf 30(4):793–827Google Scholar
  49. 49.
    Essi, WSMO Working Group (2005) Web Service Modelling Ontology.
  50. 50.
    Aggarwal R, Verma K, Miller JA, Milnor W (2004) Constraint driven web service composition in METEOR-S. In: IEEE International conference on services computing (SCC’04). IEEE Computer Society, pp 23–30Google Scholar
  51. 51.
    Bartalos P, Bieliková M (2010) QoS aware semantic web service composition approach considering pre/postconditions. In: Proceedings of IEEE international conference on web services (ICWS’10). IEEE Computer Society, pp 345–352Google Scholar
  52. 52.
    Brogi A, Corfini S, Popescu R (2008) Semantics-based composition-oriented discovery of web services. ACM Trans Internet Technol 8(4):19:1–19:39Google Scholar
  53. 53.
    Kona S, Bansal A, Blake MB, Gupta G (2008) Generalized semantics-based service composition. In: IEEE international conference on web services (ICWS’08). IEEE Computer Society, pp 219–227Google Scholar
  54. 54.
    Naeem M, Heckel R, Orejas F, Hermann F (2010) Incremental service composition based on partial matching of visual contracts. In: Proceedings of fundamental approaches to software engineering (FASE’10), LNCS, vol 6013. Springer, Berlin, pp 123–138Google Scholar
  55. 55.
    Pathak J, Basu S, Honavar V (2006a) Modeling web service composition using symbolic transition systems. In: Proceedings of AAAI workshop on AI-driven technologies for service-oriented computing. AAAI Press, CaliforniaGoogle Scholar
  56. 56.
    Patil AA, Oundhakar SA, Sheth AP, Verma K (2004) Meteor-s web service annotation framework. In: Proceedings of the 13th international conference on world wide web (WWW’04). ACM, pp 553–562Google Scholar
  57. 57.
    Vaculin R, Neruda R, Sycara K (2009) The process mediation framework for semantic web services. Int J Agent Oriented Softw Eng 3(1):27–58CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of PaderbornPaderbornGermany

Personalised recommendations