Computer Science - Research and Development

, Volume 27, Issue 3, pp 181–187 | Cite as

Stochastic online scheduling

Open Access
Special Issue Paper

Abstract

In this paper we consider a model for scheduling under uncertainty. In this model, we combine the main characteristics of online and stochastic scheduling in a simple and natural way. Jobs arrive in an online manner and as soon as a job becomes known, the scheduler only learns about the probability distribution of the processing time and not the actual processing time. This model is called the stochastic online scheduling (SOS) model. Both online scheduling and stochastic scheduling are special cases of this model. In this paper, we survey the results for the SOS model.

Keywords

Scheduling under uncertainty Online scheduling Stochastic scheduling Approximation policies 

References

  1. 1.
    Becchetti L, Marchetti-Spaccamela A, Schäfer G, Vredeveld T (2006) On scheduling stochastic jobs to minimize the expected total flow time. Unpublished manuscript Google Scholar
  2. 2.
    Brucker P (2004) Scheduling algorithms, 4th edn. Springer, Berlin MATHGoogle Scholar
  3. 3.
    Chakrabarti S, Muthukrishnan S (1996) Resource scheduling for parallel database and scientific applications. In: Proceedings of the 8th annual ACM symposium on parallel algorithms and architectures (SPAA), pp 329–335 CrossRefGoogle Scholar
  4. 4.
    Chazan D, Konheim AG, Weiss B (1968) A note on time sharing. J Comb Theory 5:344–369 MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chekuri C, Johnson R, Motwani R, Natarajan B, Rau B, Schlansker M (1996) An analysis of profile-driven instruction level parallel scheduling with application to super blocks. In: Proceedings 29th IEEE/ACM int. symp. on microarchitecture, Paris, France, pp 58–69 CrossRefGoogle Scholar
  6. 6.
    Chen G, Shen Z-JM (2007) Probabilistic asymptotic analysis of stochastic online scheduling problems. IIE Trans 39:525–538 CrossRefGoogle Scholar
  7. 7.
    Chou C-FM, Liu H, Queyranne M, Simchi-Levi D (2006) On the asymptotic optimality of a simple on-line algorithm for the stochastic single machine weighted completion time problem and its extensions. Oper Res 54(3):464–474 MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Correa J, Wagner M (2009) LP-based online scheduling: from single to parallel machines. Math Program 119:109–136 MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Dean BC (2005) Approximation algorithms for stochastic scheduling problems. PhD thesis, Massachusetts Institute of Technology Google Scholar
  10. 10.
    Erlebach T, Kääb V, Möhring RH (2004) Scheduling AND/OR-networks on identical parallel machines. In: Jansen K, Solis-Oba R (eds) Proceedings of the first international workshop on approximation and online algorithms, WAOA 2003. Lecture notes in computer science, Budapest, Hungary, vol 2909. Springer, Berlin, pp 123–136 CrossRefGoogle Scholar
  11. 11.
    Feldmann A, Kao M-Y, Sgall J, Teng S-H (1998) Optimal online scheduling of parallel jobs with dependencies. J Comb Optim 1(4):393–411 MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Gittins JC (1979) Bandit processes and dynamic allocation indices. J R Stat Soc, Ser B 41:148–177 MathSciNetMATHGoogle Scholar
  13. 13.
    Gittins JC (1989) Multi-armed bandit allocation indices. Wiley, New York MATHGoogle Scholar
  14. 14.
    Goemans MX (1997) Improved approximation algorithms for scheduling with release dates. In: Proceedings of the 8th ACM-SIAM symposium on discrete algorithms, New Orleans, LA, USA, pp 591–598 Google Scholar
  15. 15.
    Goemans MX, Queyranne M, Schulz AS, Skutella M, Wang Y (2002) Single machine scheduling with release dates. SIAM J Discrete Math 15:165–192 MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Konheim AG (1968) A note on time sharing with preferred customers. Probab Theory Relat Fields 9:112–130 MathSciNetMATHGoogle Scholar
  17. 17.
    Leung JY-T (2004) Handbook of scheduling: algorithms, models, and performance analysis. Chapman & Hall, London MATHGoogle Scholar
  18. 18.
    Megow N, Schulz AS (2004) On-line scheduling to minimize average completion time revisited. Oper Res Lett 32(5):485–490 MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Megow N, Uetz M, Vredeveld T (2006) Models and algorithms for stochastic online scheduling. Math Oper Res 31(3):513–525 MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Megow N, Vredeveld T (2006) Approximation in preemptive stochastic online scheduling. In: Azar Y, Erlebach T (eds) Proceedings of 14th European symposium on algorithms. Lecture notes in computer science, Zurich, Switzerland, vol 4168. Springer, Berlin, pp 516–527 Google Scholar
  21. 21.
    Megow N, Vredeveld T (2007) Stochastic online scheduling with precedence constraints. Technical report 029-2007, Technische Universität Berlin Google Scholar
  22. 22.
    Möhring RH, Radermacher FJ, Weiss G (1984) Stochastic scheduling problems I: General strategies. Z Oper-Res 28:193–260 MATHGoogle Scholar
  23. 23.
    Möhring RH, Schulz AS, Uetz M (1999) Approximation in stochastic scheduling: the power of LP-based priority policies. J ACM 46:924–942 MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Pinedo M (2002) Scheduling: theory, algorithms, and systems, 3rd edn. Springer, Berlin MATHGoogle Scholar
  25. 25.
    Pinedo M (2004) Off-line deterministic scheduling, stochastic scheduling, and online deterministic scheduling: a comparative overview. In: Leung JY-T (ed) Handbook of scheduling: algorithms, models, and performance analysis, chap. 38, Chapman & Hall, London Google Scholar
  26. 26.
    Pruhs KR, Sgall J, Torng E (2004) Online scheduling. In: Leung JY-T (ed) Handbook of scheduling: algorithms, models, and performance analysis, chap. 15, Chapman & Hall, London Google Scholar
  27. 27.
    Rothkopf MH (1966) Scheduling with random service times. Manag Sci 12:703–713 MathSciNetGoogle Scholar
  28. 28.
    Schulz A (2008) Stochastic online scheduling revisited. In: Yang B, Du D-Z, Wang C (eds) Combinatorial optimization and applications (COCOA). Lecture notes in computer science, vol 5165, pp 448–457 CrossRefGoogle Scholar
  29. 29.
    Sevcik KC (1974) Scheduling for minimum total loss using service time distributions. J ACM 21:65–75 MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Smith WE (1956) Various optimizers for single-stage production. Nav Res Logist Q 3:59–66 CrossRefGoogle Scholar
  31. 31.
    Sousa J (1989) Time indexed formulations of non-preemptive single-machine scheduling problems. PhD thesis, Université Catholique de Louvain Google Scholar
  32. 32.
    Uetz M (2002) Algorithms for deterministic and stochastic scheduling. Cuvillier Verlag, Göttingen Google Scholar
  33. 33.
    Weiss G (1995) On almost optimal priority rules for preemptive scheduling of stochastic jobs on parallel machines. Adv Appl Probab 27:827–845 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Department of Quantitative EconomicsMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations