Computer Science - Research and Development

, Volume 25, Issue 3–4, pp 141–148 | Cite as

Energy efficiency of mixed precision iterative refinement methods using hybrid hardware platforms

An evaluation of different solver and hardware configurations
  • Hartwig AnztEmail author
  • Björn Rocker
  • Vincent Heuveline
Special Issue Paper


In this paper we evaluate the possibility of using mixed precision algorithms on different hardware platforms to obtain energy-efficient solvers for linear systems of equations. Our test-cases arise in the context of computational fluid dynamics.

Therefore, we analyze the energy efficiency of common cluster nodes and a hybrid, GPU-accelerated cluster node, when applying a linear solver, that can benefit from the use of different precision formats.

We show the high potential of hardware-aware computing in terms of performance and energy efficiency.


Energy-efficient computing Mixed precision Iterative refinement method Error correcting method GMRES Computational Fluid Dynamics (CFD) Hybrid hardware platforms Hardware-aware computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lampe F (2010) Mit neuen IT-Technologien Energieeffizienz erreichen, die Umwelt schonen und Kosten sparen, 1st edn. Vieweg+Teubner/GWV Fachverlage GmbH, Wiesbaden Google Scholar
  2. 2.
    ExaScale Computing Study (2008) Technology challenges in achieving ExaScale systems, DARPA/IPTO, 297 p Google Scholar
  3. 3.
    Anzt H, Rocker B, Heuveline V (2010) Mixed precision error correction methods for linear systems: convergence analysis based on Krylov subspace methods. In: Proceedings of PARA 2010. State of the art in scientific and parallel computing, 11 p Google Scholar
  4. 4.
    Göddeke D, Strzodka R, Turek S (2007) Performance and accuracy of hardware- oriented native-, emulated- and mixed-precision solvers in FEM simulations. Int J Parallel Emergent Distributed Syst 22:1744–1760. Special issue: applied parallel computing Google Scholar
  5. 5.
    Göddeke D, Strzodka R (2008) Performance and accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simulations (Part 2: Double precision GPUs). Technical report, Fakultät für Mathematik TU Dortmund, 9 p Google Scholar
  6. 6.
    Buttari A, Dongarra J, Langou J, Langou J, Luszcek P, Kurzak J (2007) Mixed precision iterative refinement techniques for the solution of dense linear systems. Int J High Perform Comput Appl 21(4):457–466 CrossRefGoogle Scholar
  7. 7.
    Baboulin M, Buttari A, Dongarra J, Langou J, Langou J, Luszcek P, Kurzak J, Tomov S (2009) Accelerating scientific computations with mixed precision algorithms. Comput Phys Commun 180:2526–2533 CrossRefGoogle Scholar
  8. 8.
    Anzt H, Rocker B, Heuveline V (2010) An error correction solver for linear systems: evaluation of mixed precision implementations. In: Proceedings of VECPAR 2010. 9th international meeting on high performance computing for computational science, 8 p Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Hartwig Anzt
    • 1
    Email author
  • Björn Rocker
    • 1
  • Vincent Heuveline
    • 1
  1. 1.Institute for Applied and Numerical Mathematics 4Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations