Massively parallel granular flow simulations with non-spherical particles

Special Issue Paper

Abstract

Although granular materials have always been an important part of our everyday life, their characteristics and behavior is still only rudimentally understood. Therefore the numerical simulation has gained an increasing importance to gain deeper insight into the properties of granular media. One simulation approach is rigid body dynamics. In contrast to particle-based approaches, it fully resolves the granular particles as geometric objects and incorporates frictional contact dynamics. However, due to its complexity and the lack of large-scale parallelization, rigid body dynamics so far could not be used for very large simulation scenarios.

In this paper we demonstrate massively parallel granular media simulations by means of a parallel rigid body dynamics algorithm. We will validate the algorithm for granular gas simulations and prove its scalability on up to 131 072 processor cores. Additionally, we will show several parallel granular material simulations both with spherical and non-spherical granular particles.

Keywords

Granular media Rigid body dynamics Parallel algorithms Parallel frameworks Massively parallel Large-scale MPI Parallelization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buchholtz V, Freund J, Pöschel T (2000) Molecular dynamics of comminution in ball mills. Eur Phys J B 16:169–182 CrossRefGoogle Scholar
  2. 2.
    Griebel M, Knapek S, Zumbusch G (2008) Numerical simulation in molecular dynamics. Springer, Berlin Google Scholar
  3. 3.
    Pöschel T, Schwager T (2005) Computational granular dynamics: models and algorithms. Springer, Berlin Google Scholar
  4. 4.
    Fleissner F, Eberhard P (2007) Parallel load-balanced simulation for short-range interaction particle methods with hierarchical particle grouping based on orthogonal recursive bisection. Int J Numer Methods Eng 74:531–553 CrossRefGoogle Scholar
  5. 5.
    Anitescu M (2006) Optimization-based simulation of nonsmooth rigid multibody dynamics. Math Program 105(1):113–143. doi: 10.1007/s10107-005-0590-7 MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Renouf M, Alart P (2005) Conjugate gradient type algorithms for frictional multi-contact problems: applications to granular materials. Comput Methods Appl Mech Eng 194:2019–2041 MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Preclik T (2008) Iterative rigid multibody dynamics. Diploma thesis, University of Erlangen-Nuremberg, Computer Science 10—Systemsimulation Google Scholar
  8. 8.
    Renouf M, Dubois F, Alart P (2003) A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media. J Comput Appl Math 168:375–382 CrossRefMathSciNetGoogle Scholar
  9. 9.
    Iglberger K, Rüde U (2009) Massively parallel rigid body dynamics simulations. Comput Sci, Res Dev 23(3):159 CrossRefGoogle Scholar
  10. 10.
    Tasora A, Negrut D, Anitescu M (2008) Large-scale parallel multi-body dynamics with frictional contact on the graphical processing unit. Proc Inst Mech Eng Part K, J Multi-body Dyn 222(4):315–326 Google Scholar
  11. 11.
    Kaufman DM, Edmunds T, Pai DK (2005) Fast frictional dynamics for rigid bodies. ACM Trans Graph 24:946–956. (SIGGRAPH 2005) CrossRefGoogle Scholar
  12. 12.
    Wengenroth H (2007) Rigid body collisions. Master’s thesis, University of Erlangen-Nuremberg, Computer Science 10—Systemsimulation Google Scholar
  13. 13.
    Iglberger K, Rüde U (2009) The pe rigid multi-body physics engine. Tech. Rep. 09-9, University of Erlangen-Nuremberg, Computer Science 10—Systemsimulation Google Scholar
  14. 14.
    Gropp W, Skjellum A, Lusk E (1999) Using MPI. Portable parallel programming with the message passing interface, 2nd edn. MIT Press, Cambridge Google Scholar
  15. 15.
    Iglberger K, Rüde U (2009) Massively parallel rigid multi-body dynamics. Tech Rep 09-8, University of Erlangen-Nuremberg, Computer Science 10—Systemsimulation Google Scholar
  16. 16.
    Homepage of the Leibnitz Computing Center Munich. http://www.lrz-muenchen.de/english/index.html
  17. 17.
    Homepage of the Jülich Supercomputing Center (JSC). http://www.fz-juelich.de/jsc/
  18. 18.
    Woodcrest cluster of the Region Computing Center Erlangen (RRZE). http://www.rrze.uni-erlangen.de/dienste/arbeiten-rechnen/hpc/systeme/woodcrest-cluster.shtml

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Friedrich-Alexander University Erlangen-NurembergErlangenGermany

Personalised recommendations