Parallel scalable PDE-constrained optimization: antenna identification in hyperthermia cancer treatment planning

  • Olaf Schenk
  • Murat Manguoglu
  • Ahmed Sameh
  • Matthias Christen
  • Madan Sathe
Special Issue Paper


We present a PDE-constrained optimization algorithm which is designed for parallel scalability on distributed-memory architectures with thousands of cores. The method is based on a line-search interior-point algorithm for large-scale continuous optimization, it is matrix-free in that it does not require the factorization of derivative matrices. Instead, it uses a new parallel and robust iterative linear solver on distributed-memory architectures. We will show almost linear parallel scalability results for the complete optimization problem, which is a new emerging important biomedical application and is related to antenna identification in hyperthermia cancer treatment planning.


PDE-constrained optimization   Large-scale parallel optimization  Biomedical application  Saddle-point matrices  Sparse liner solver 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berry MW, Sameh A (1988) Multiprocessor schemes for solving block tridiagonal linear systems. Int J Supercomput Appl 1(3):37–57CrossRefGoogle Scholar
  2. 2.
    Biros G, Ghattas O (2005) Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization. Part I: The Krylov–Schur solver. SIAM J Sci Comput 27(2):687–713zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Biros G, Ghattas O (2005) Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization. Part II: The Lagrange–Newton solver and its application to optimal control of steady viscous flows. SIAM J Sci Comput 27(2):714–739zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Byrd RH, Curtis FE, Nocedal J (2008) An inexact SQP method for equality constrained optimization. SIAM J Optim 19(1):351–369zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Byrd RH, Curtis FE, Nocedal J (2009) An inexact Newton method for nonconvex equality constrained optimization. Math Progr A (doi:0.1007/s10107-008-0248-3)Google Scholar
  6. 6.
    Curtis FE, Nocedal J, Wächter A (2008) A matrix-free algorithm for equality constrained optimization problems with rank deficient jacobians. SIAM J Optim (submitted)Google Scholar
  7. 7.
    Curtis FE, Schenk O, Wächter A (2009) An interior-point algorithm for large-scale nonlinear optimization with inexact step computations. IBM Research Report RC 24736. SIAM J Sci Comput (submitted)Google Scholar
  8. 8.
    Dongarra JJ, Sameh AH (1984) On some parallel banded system solvers. Parall Comput 1(3):223–235CrossRefGoogle Scholar
  9. 9.
    Fisher M, Nocedal J, Trémolet Y, Wright SJ (2008) Data assimilation in weather forecasting: A case study in PDE-constrained optimization. Optim Eng. doi:10.1007/s11081-008-9051-5Google Scholar
  10. 10.
    Haber E, Ascher UM (2001) Preconditioned all-at-once methods for large, sparse parameter estimation problems. Inverse Problems 17(6):1847–1864zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mikkelsen CCK, Manguoglu M (2008) Analysis of the truncated spike algorithm. SIAM J Matrix Anal Appl 30(4):1500–1519CrossRefGoogle Scholar
  12. 12.
    Neufeld E (2008) High Resolution Hyperthermia Treatment Planning. PhD thesis, ETH ZurichGoogle Scholar
  13. 13.
    Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1(2):93–122Google Scholar
  14. 14.
    Polizzi E, Sameh AH (2006) A parallel hybrid banded system solver: the spike algorithm. Parall Comput 32(2):177–194CrossRefMathSciNetGoogle Scholar
  15. 15.
    Polizzi E, Sameh AH (2007) Spike: A parallel environment for solving banded linear systems. Comput Fluids 36(1):113–120zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kuck DJ, Chen SC, Sameh AH (1978) Practical parallel band triangular system solvers. ACM Trans Math Softw 4(3):270–277zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Sameh AH, Kuck DJ (1978) On stable parallel linear system solvers. J ACM 25(1):81–91zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Schenk O, Gärtner K (2006) On fast factorization pivoting methods for sparse symmetric indefinite systems. Electron Trans Num Anal 23:158–179zbMATHGoogle Scholar
  19. 19.
    Schenk O, Gärtner K (2004) Solving unsymmetric sparse systems of linear equations with PARDISO. Fut Generat Comput Syst 20(3):475–487CrossRefGoogle Scholar
  20. 20.
    Schenk O, Wächter A, Weiser M (2008) Inertia revealing preconditioning for large-scale nonconvex constrained optimization. SIAM J Sci Comput 31(2):939–960CrossRefMathSciNetGoogle Scholar
  21. 21.
    van der Vorst HA (1992) Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644zbMATHCrossRefGoogle Scholar
  22. 22.
    Wächter A, Biegler LT (2006) On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math Prog 106(1):25–57zbMATHCrossRefGoogle Scholar
  23. 23.
    Young DP, Huffman WP, Melvin RG, Hilmes CL, Johnson FT (2003) Nonlinear elimination in aerodynamic analysis and design optimization. In: Biegler LT, Ghattas O, Heinkenschloss M, v Bloemen-Waanders B (eds) Large-Scale PDE-Constrained Optimization, Springer, New York, pp 17–44Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Olaf Schenk
    • 1
  • Murat Manguoglu
    • 2
  • Ahmed Sameh
    • 2
  • Matthias Christen
    • 1
  • Madan Sathe
    • 1
  1. 1.Computer Science DepartmentUniversity of BaselBaselSwitzerland
  2. 2.Computer SciencesUniversity of PurdueWest LafayetteUSA

Personalised recommendations