Skip to main content

Advertisement

Log in

Bioengineered gold nanoparticles from marine seaweed Acanthophora spicifera for pharmaceutical uses: antioxidant, antibacterial, and anticancer activities

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, we report a green synthesis of pharmaceutically active gold nanoparticles from marine red alga Acanthophora spicifera by the reduction of chloroauric acid. The formation of A. spicifera-mediated gold nanoparticles (As-AuNPs) was characterized by several analytical techniques. The crystalline and face-centered cubic (fcc) structure were confirmed by X-ray diffraction (XRD) analysis. Electron microscopy results confirmed that As-AuNPs were spherical and the average size of particles was < 20 nm. As-AuNPs hold a significant level of antioxidant activities than A. spicifera extract. As-AuNPs exhibited the highest antibacterial activity against Vibrio harveyi than Staphylococcus aureus at 100 µg/ml. Furthermore, As-AuNPs exhibited the utmost cytotoxicity against human colon adenocarcinoma (HT-29) cells and registered the half-maximal inhibitory concentration (IC50) at 21.86 µg/ml. These findings authenticated that the synthesized As-AuNPs possess a broad spectrum of biological activities, and it can be effectively applied in the field of aquaculture and biomedical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Davoodbasha MA, Park BR, Rhee WJ, Lee SY, Kim JW (2018) Antioxidant potentials of nanoceria synthesized by solution plasma process and its biocompatibility study. Arch Biochem Biophys 645:42–49. https://doi.org/10.1016/j.abb.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  2. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:71

    Article  Google Scholar 

  4. Goldburg R, Naylor R (2005) Future seascapes, fishing, and fish farming. Front Ecol Environ 3:21–28. https://doi.org/10.1890/15409295(2005)003%5b0021:FSFAFF%5d2.0.CO;2

    Article  Google Scholar 

  5. Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144

    Article  CAS  PubMed  Google Scholar 

  6. Shaalan MI, El-Mahdy MM, Theiner S, Matbouli ME, Saleh M (2017) In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Vet Scand. https://doi.org/10.1186/s13028-017-0317-9

    Article  PubMed  PubMed Central  Google Scholar 

  7. Golden CD, Seto KL, Dey MM, Chen OL, Gephart JA, Myers SS, Smith M, Vaitla B, Allison EH (2017) Does aquaculture support the needs of nutritionally vulnerable nations? Front Mar Sci 4:159. https://doi.org/10.3389/fmars.2017.00159

    Article  Google Scholar 

  8. Liu L, Ge M, Zheng X, Tao Z, Zhou S, Wang G (2016) Investigation of Vibrio alginolyticus, V. harveyi, and V. parahaemolyticus in large yellow croaker, Pseudosciaena crocea (Richardson) reared in Xiangshan Bay, China. Aquacult Rep 3:220–224. https://doi.org/10.1016/j.aqrep.2016.04.004

    Article  Google Scholar 

  9. Gomez-Gil B, Soto-Rodŕiguez S, García-Gasca A, Roque A, Vazquez-Juarez R, Thompson FL, Swings J (2004) Molecular identification of Vibrio harveyi-related isolates associated with diseased aquatic organisms. Microbiology 150:1769–1777. https://doi.org/10.1099/mic.0.26797-0

    Article  CAS  PubMed  Google Scholar 

  10. Harris L (1995) The involvement of toxins in the virulence of Vibrio harveyi strains pathogenic to the black tiger shrimp Penaeus monodon and the use of commercial probiotics to reduce Shrimp hatchery disease outbreaks caused by V. harveyi strains. In: CRC for Aquaculture, Scientific Conference abstract. Bribie Island, Australia

  11. Kraxberger-Beatty T, McGarey DJ, Grier HJ, Lim DV (1990) Vibrio harveyi, an opportunistic pathogen of common snook, Centropomus undecimalis (Bloch), held in captivity. J Fish Dis 13:557–560. https://doi.org/10.1111/j.1365-2761.1990.tb00819.x

    Article  Google Scholar 

  12. Company R, Sitj A, Pujalte MJ, Garay E, Alvarez-Pellitero P, Rez-S JP, nchez (2002) Bacterial and parasitic pathogens in cultured common dentex, Dentex dentex L. J Fish Dis 22:299–309. https://doi.org/10.1046/j.1365-2761.1999.00182.x

    Article  Google Scholar 

  13. Zorrilla I, Arijo S, Chabrillon M, Diaz P, Martinez-Manzanares E, Balebona MC, Morinigo MA (2003) Vibrio species isolated from diseased farmed sole, Solea senegalensis (Kaup), and evaluation of the potential virulence role of their extracellular products. J Fish Dis 26:103–108. https://doi.org/10.1046/j.1365-2761.2003.00437.x

    Article  CAS  PubMed  Google Scholar 

  14. Saeed MO (1995) Association of Vibrio harveyi with mortalities in cultured marine fish in Kuwait. Aquaculture 136:21–29. https://doi.org/10.1016/0044-8486(95)01045-9

    Article  Google Scholar 

  15. Austin B, Zhang X-H (2006) Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43:119–124. https://doi.org/10.1111/j.1472-765X.2006.01989.x

    Article  CAS  PubMed  Google Scholar 

  16. Arfatahery N, Mirshafiey A, Abedimohtasab TP, Zeinolabedinizamani M (2015) Study of the prevalence of Staphylococcus aureus in marine and farmed Shrimps in Iran aiming the future development of a prophylactic vaccine. Procedia Vaccinol 9:44–49. https://doi.org/10.1016/j.provac.2015.05.008

    Article  Google Scholar 

  17. Hennekinne JA, De Buyser ML, Dragacci S (2012) Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev 36:815–836

    Article  CAS  PubMed  Google Scholar 

  18. Velmurugan P, Anbalagan K, Manosathyadevan M, Lee K, Cho M, Lee S, Park J, Oh S, Bang K, Oh B (2014) Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioproc Biosyst Eng 37:1935–1943. https://doi.org/10.1007/s00449-014-1169-6

    Article  CAS  Google Scholar 

  19. Heron M, Hoyert DL, Murphy SL, Xu J, Kochanek Kenneth D, Tejada-Vera Betzaida (2009) Deaths: final data for 2006. National vital statistics reports: from the Centers for Disease Control and Prevention. National Center for Health Statistics, National Vital Statistics System 57:1–134

    Google Scholar 

  20. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA-Cancer J Clin 61:69–90. https://doi.org/10.3322/caac.20107

    Article  PubMed  Google Scholar 

  21. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA-Cancer J Clin 70:7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  22. Pourhoseingholi MA (2012) Increased burden of colorectal cancer in Asia. World J Gastro Oncol 4:68. https://doi.org/10.4251/wjgo.v4.i4.68

    Article  Google Scholar 

  23. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2012) Globocan 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. (2012). http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx.

  24. Lieberman DA, Prindiville S, Weiss DG, Willett W (2003) Risk factors for advanced colonic neoplasia and hyperplastic polyps in asymptomatic individuals. JAMA J Am Med Assoc 290:2959–2967. https://doi.org/10.1001/jama.290.22.2959

    Article  Google Scholar 

  25. Jo WS, Chung DC (2005) Genetics of hereditary colorectal cancer. Semin Oncol 32:11–23. https://doi.org/10.1053/j.seminoncol.2004.09.034

    Article  CAS  PubMed  Google Scholar 

  26. Ravichandran A, Subramanian P, Manoharan V, Muthu T, Periyannan R, Thangapandi M, Ponnuchamy K, Pandi B, Marimuthu PN (2018) Phyto-mediated synthesis of silver nanoparticles using fucoidan isolated from Spatoglossum asperum and assessment of antibacterial activities. J Photoch Photobio B 185:117–125. https://doi.org/10.1016/j.jphotobiol.2018.05.031

    Article  CAS  Google Scholar 

  27. Shah M, Fawcett D, Sharma S, Tripathy SK (2015) Poinern GEJ Green synthesis of metallic nanoparticles via biological entities. Materials 8:7278–7308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khandel P, Yadaw RK, Soni DK, Kanwar L, Shahi SK (2018) Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostruct Chem 8:217–254. https://doi.org/10.1007/s40097-018-0267-4

    Article  CAS  Google Scholar 

  29. Vinosha M, Palanisamy S, Muthukrishnan R, Selvam S, Kannapiran E, You SG, Prabhu NM (2019) Biogenic synthesis of gold nanoparticles from Halymenia dilatata for pharmaceutical applications: antioxidant, anti-cancer and antibacterial activities. Process Biochem 85:219–229. https://doi.org/10.1016/j.procbio.2019.07.013

    Article  CAS  Google Scholar 

  30. Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44:5778–5792. https://doi.org/10.1039/c4cs00363b

    Article  CAS  PubMed  Google Scholar 

  31. Shanmuganathan B, Sheeja Malar D, Sathya S, Pandima Devi K (2015) Antiaggregation potential of Padina gymnospora against the toxic Alzheimer’s beta-amyloid peptide 25–35 and cholinesterase inhibitory property of its bioactive compounds. PLoS ONE 10:e0141708. https://doi.org/10.1371/journal.pone.0141708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shanmuganathan B, Pandima Devi K (2016) Evaluation of the nutritional profile and antioxidant and anti-cholinesterase activities of Padina gymnospora (Phaeophyceae). Eur J Phycol 51:482–490. https://doi.org/10.1080/09670262.2016.1218938

    Article  CAS  Google Scholar 

  33. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/0922-338X(96)89160-4

    Article  CAS  PubMed  Google Scholar 

  34. Palanisamy S, Rajasekar P, Vijayaprasath G, Ravi G, Manikandan R, Prabhu NM (2017) A green route to synthesis silver nanoparticles using Sargassum polycystum and its antioxidant and cytotoxic effects: an in vitro analysis. Mater Lett 189:196–200. https://doi.org/10.1016/j.matlet.2016.12.005

    Article  CAS  Google Scholar 

  35. Zhou J, Fang W, Yang X, Zhou S, Hu L, Li X, Qi X, Su H, Xie L (2012) A Nonluminescent and highly virulent Vibrio harveyi strain is associated with “Bacterial White Tail Disease” of Litopenaeus vannamei Shrimp. PLoS ONE 7:e29961. https://doi.org/10.1371/journal.pone.0029961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Balasubramanian S, Kala SMJ, Pushparaj TL (2020) Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial and anticancer activities. J Drug Deliv Sci Tec 57:101620. https://doi.org/10.1016/j.jddst.2020.101620

    Article  CAS  Google Scholar 

  37. Menezes PW, Indra A, Gutkin V, Driess M (2017) Boosting electrochemical water oxidation through replacement of Oh Co sites in cobalt oxide spinel with manganese. Chem Comm 53:8018–8021. https://doi.org/10.1039/c7cc03749j

    Article  CAS  PubMed  Google Scholar 

  38. Manikandakrishnan M, Palanisamy S, Vinosha M, Kalanjiaraja B, Mohandoss S, Manikandan R, Tabarsa M, You S, Prabhu NM (2019) Facile green route synthesis of gold nanoparticles using Caulerpa racemosa for biomedical applications. J Drug Deliv Sci Tec 54:101345. https://doi.org/10.1016/j.jddst.2019.101345

    Article  CAS  Google Scholar 

  39. Suriyakalaa U, Antony JJ, Suganya S, Siva D, Sukirtha R, Kamalakkannan S, Tirupathi Pichiah PB, Achiraman S (2013) Hepatocurative activity of biosynthesized silver nanoparticles fabricated using Andrographis paniculata. Colloid Surf B 102:189–194. https://doi.org/10.1016/j.colsurfb.2012.06.039

    Article  CAS  Google Scholar 

  40. Antony JJ, Nivedheetha M, Siva D, Pradeepha G, Kokilavani P, Kalaiselvi S, Sankarganesh A, Balasundaram A, Masilamani V, Achiraman S (2013) Antimicrobial activity of Leucas aspera engineered silver nanoparticles against Aeromonas hydrophila in infected Catla catla. Colloid Surf B 109:20–24. https://doi.org/10.1016/j.colsurfb.2013.03.020

    Article  CAS  Google Scholar 

  41. Jalilian F, Chahardoli A, Sadrjavadi K, Fattahi A, Shokoohinia Y (2020) Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: characterization, antioxidant activities, antibacterial and cytotoxicity effects. Adv Powder Technol. https://doi.org/10.1016/j.apt.2020.01.011

    Article  Google Scholar 

  42. Paul Das M, Rebecca Livingstone J, Veluswamy P, Das J (2018) Exploration of Wedelia chinensis leaf-assisted silver nanoparticles for antioxidant, antibacterial and in vitro cytotoxic applications. J Food Drug Anal 26:917–925. https://doi.org/10.1016/j.jfda.2017.07.014

    Article  CAS  PubMed  Google Scholar 

  43. Vijayan R, Joseph S, Mathew B (2018) Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif Cells Nanomed Biotechnol 46:861–871. https://doi.org/10.1080/21691401.2017.1345930

    Article  CAS  PubMed  Google Scholar 

  44. Shankar SS, Rai A, Ahmad A, Sastry M (2005) Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem Mater 17:566–572. https://doi.org/10.1021/cm048292g

    Article  CAS  Google Scholar 

  45. Zhang J, Mou L, Jiang X (2020) Surface chemistry of gold nanoparticles for health-related applications. Chem Sci 11:923–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rajeshkumar S, Malarkodi C, Vanaja M, Gnanajobitha G, Paulkumar K, Kannan C, Annadurai G (2013) Antibacterial activity of algae mediated synthesis of gold nanoparticles from Turbinaria conoides. Der Pharma Chemica 5:224–229

    CAS  Google Scholar 

  47. Esquer-Miranda E, Nieves-Soto M, Rivas-Vega ME, Miranda-Baeza A, Pina-Valdez P (2016) Effects of methanolic macroalgae extracts from Caulerpa sertularioides and Ulva lactuca on Litopenaeus vannamei survival in the presence of Vibrio bacteria. Fish Shellfish Immun 51:346–350. https://doi.org/10.1016/j.fsi.2016.02.028

    Article  Google Scholar 

  48. Prasanna R, Harish CC, Pichai R, Sakthisekaran D, Gunasekaran P (2009) Anti-cancer effect of Cassia auriculata leaf extract in vitro through cell cycle arrest and induction of apoptosis in human breast and larynx cancer cell lines. Cell Biol Int 33:127–134. https://doi.org/10.1016/j.cellbi.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  49. Prasanna R, Chinnakonda Chandramoorthy H, Ramaiyapillai P, Sakthisekaran D (2011) In vitro evaluation of anticancer effect of Cassia auriculata leaf extract and curcumin through induction of apoptosis in human breast and larynx cancer cell lines. Biomed Prev Nutr 1:153–160. https://doi.org/10.1016/j.bionut.2010.12.006

    Article  Google Scholar 

  50. Ramar M, Manikandan B, Marimuthu PN, Raman T, Mahalingam A, Subramanian P, Karthick S, Munusamy A (2015) Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7. Spectrochim Acta A 140:223–228. https://doi.org/10.1016/j.saa.2014.12.060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to RUSA scheme Phase 2.0 Grant [F-24-51/ 2014–U, Policy (TNMulti-Gen), Dept of Edn. Govt. of India. Dt. 09.10.2018] for their financial support. The authors also wish to thank the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1A6A1A03023584) for the support to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayanasamy Marimuthu Prabhu.

Ethics declarations

Conflicts of interest

There are no conflicts to declare. Also, I hereby declare that Dr. Mehdi Tabarsa, one of our manuscript co-authors, is an Associate Professor of the Department of Seafood Processing at Tarbiat Modares University which has no function other than research and education. Moreover, none of them is an official representative or on behalf of the government.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, B., Palanisamy, S., Vinosha, M. et al. Bioengineered gold nanoparticles from marine seaweed Acanthophora spicifera for pharmaceutical uses: antioxidant, antibacterial, and anticancer activities. Bioprocess Biosyst Eng 43, 2231–2242 (2020). https://doi.org/10.1007/s00449-020-02408-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02408-3

Keywords

Navigation