Skip to main content
Log in

Raman spectroscopic based chemometric models to support a dynamic capacitance based cell culture feeding strategy

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Multiple process analytical technology (PAT) tools are now being applied in tandem for cell culture. Research presented used two in-line probes, capacitance for a dynamic feeding strategy and Raman spectroscopy for real-time monitoring. Data collected from eight batches at the 15,000 L scale were used to develop process models. Raman spectroscopic data were modelled using Partial Least Squares (PLS) by two methods—(1) use of the full dataset and (2) split the dataset based on the capacitance feeding strategy. Root mean square error of prediction (RMSEP) for the first model method of capacitance was 1.54 pf/cm and the second modelling method was 1.40 pf/cm. The second Raman method demonstrated results within expected process limits for capacitance and a 0.01% difference in total nutrient feed compared to the capacitance probe. Additional variables modelled using Raman spectroscopy were viable cell density (VCD), viability, average cell diameter, and viable cell volume (VCV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Food and Drug Administration (2004) PAT—A Framework for Innovative Pharmaceutical Development, Manufac. In: U.S. Food and Drug Administration. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/pat-framework-innovative-pharmaceutical-development-manufacturing-and-quality-assurance. Accessed 30 Nov 2019

  2. Mercier S, Diepenbroek B, Wijffels R, Streefland M (2014) Multivariate PAT solutions for biopharmaceutical cultivation: current progress and limitations. Trends Biotechnol 32:329–336. https://doi.org/10.1016/j.tibtech.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  3. Zhang A, Tsang V, Moore B, Shen V, Huang Y, Kshirsagar R, Ryll T (2015) Advanced process monitoring and feedback control to enhance cell culture process production and robustness. Biotechnol Bioeng 112:2495–2504. https://doi.org/10.1002/bit.25684

    Article  CAS  PubMed  Google Scholar 

  4. Konakovsky V, Clemens C, Müller M, Bechmann J, Herwig C (2017) A robust feeding strategy to maintain set-point glucose in mammalian fed-batch cultures when input parameters have a large error. Biotechnol Prog 33:317–336. https://doi.org/10.1002/btpr.2438

    Article  CAS  PubMed  Google Scholar 

  5. Gagnon M, Hiller G, Luan Y, Kittredge A, DeFelice J, Drapeau D (2011) High-end pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO Fed-batch cultures. Biotechnol Bioeng 108:1328–1337. https://doi.org/10.1002/bit.23072

    Article  CAS  PubMed  Google Scholar 

  6. Berry B, Dobrowsky T, Timson R, Kshirsagar R, Ryll T, Wiltberger K (2015) Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture. Biotechnol Prog 32:224–234. https://doi.org/10.1002/btpr.2205

    Article  CAS  PubMed  Google Scholar 

  7. Justice C, Brix A, Freimark D, Kraume M, Pfromm P, Eichenmueller B, Czermak P (2011) Process control in cell culture technology using dielectric spectroscopy. Biotechnol Adv 29:391–401. https://doi.org/10.1016/j.biotechadv.2011.03.002

    Article  CAS  PubMed  Google Scholar 

  8. Dowd J, Jubb A, Kwok K, Piret J (2003) Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates. Cytotechnology 42(1):35–45. https://doi.org/10.1023/A:1026192228471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ansorge S, Esteban G, Schmid G (2010) On-line monitoring of responses to nutrient feed additions by multi-frequency permittivity measurements in fed-batch cultivations of CHO cells. Cytotechnology 62:121–132. https://doi.org/10.1007/s10616-010-9267-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Opel C, Li J, Amanullah A (2010) Quantitative modeling of viable cell density, cell size, intracellular conductivity, and membrane capacitance in batch and fed-batch CHO processes using dielectric spectroscopy. Biotechnol Prog. https://doi.org/10.1002/btpr.425

    Article  PubMed  Google Scholar 

  11. Ma F, Zhang A, Chang D, Velev O, Wiltberger K, Kshirsagar R (2019) Real-time monitoring and control of CHO cell apoptosis by in situ multifrequency scanning dielectric spectroscopy. Process Biochem 80:138–145. https://doi.org/10.1016/j.procbio.2019.02.017

    Article  CAS  Google Scholar 

  12. Lee H, Carvell J, Brorson K, Yoon S (2014) Dielectric spectroscopy-based estimation of VCD in CHO cell culture. J Chem Technol Biotechnol 90:273–282. https://doi.org/10.1002/jctb.4522

    Article  CAS  Google Scholar 

  13. Downey B, Graham L, Breit J, Glutting N (2014) A novel approach for using dielectric spectroscopy to predict viable cell volume (VCV) in early process development. Biotechnol Prog 30:479–487. https://doi.org/10.1002/btpr.1845

    Article  CAS  PubMed  Google Scholar 

  14. Lu F, Toh P, Burnett I, Li F, Hudson T, Amanullah A, Li J (2012) Automated dynamic fed-batch process and media optimization for high productivity cell culture process development. Biotechnol Bioeng 110:191–205. https://doi.org/10.1002/bit.24602

    Article  CAS  PubMed  Google Scholar 

  15. Konakovsky V, Yagtu A, Clemens C, Müller M, Berger M, Schlatter S, Herwig C (2015) Universal capacitance model for real-time biomass in cell culture. Sensors 15:22128–22150. https://doi.org/10.3390/s150922128

    Article  CAS  PubMed  Google Scholar 

  16. Fernandes J, Currie J, Ramer K, Zhang A (2018) Development of capacitance tools: at-line method for assessing biomass of mammalian cell culture and fixed cell calibration standard. Biotechnol J 14:1800283. https://doi.org/10.1002/biot.201800283

    Article  CAS  Google Scholar 

  17. Abu-Absi N, Kenty B, Cuellar M, Borys M, Sakhamuri S, Strachan D, Hausladen M, Li Z (2010) Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol Bioeng 108:1215–1221. https://doi.org/10.1002/bit.23023

    Article  CAS  PubMed  Google Scholar 

  18. Capito F, Zimmer A, Skudas R (2015) Mid-infrared spectroscopy-based analysis of mammalian cell culture parameters. Biotechnol Prog 31:578–584. https://doi.org/10.1002/btpr.2026

    Article  CAS  PubMed  Google Scholar 

  19. Teixeira A, Portugal C, Carinhas N, Dias J, Crespo J, Alves P, Carrondo M, Oliveira R (2009) In situ 2D fluorometry and chemometric monitoring of mammalian cell cultures. Biotechnol Bioeng 102:1098–1106. https://doi.org/10.1002/bit.22125

    Article  CAS  PubMed  Google Scholar 

  20. Courtès F, Ebel B, Guédon E, Marc A (2016) A dual near-infrared and dielectric spectroscopies strategy to monitor populations of Chinese hamster ovary cells in bioreactor. Biotechnol Lett 38:745–750. https://doi.org/10.1007/s10529-016-2036-0

    Article  CAS  PubMed  Google Scholar 

  21. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130. https://doi.org/10.1016/s0169-7439(01)00155-1

    Article  CAS  Google Scholar 

  22. Whelan J, Craven S, Glennon B (2012) In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors. Biotechnol Prog 28:1355–1362. https://doi.org/10.1002/btpr.1590

    Article  CAS  PubMed  Google Scholar 

  23. Berry B, Moretto J, Matthews T, Smelko J, Wiltberger K (2014) Cross-scale predictive modeling of CHO cell culture growth and metabolites using Raman spectroscopy and multivariate analysis. Biotechnol Prog 31:566–577. https://doi.org/10.1002/btpr.2035

    Article  CAS  PubMed  Google Scholar 

  24. Mehdizadeh H, Lauri D, Karry K, Moshgbar M, Procopio-Melino R, Drapeau D (2015) Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors. Biotechnol Prog 31:1004–1013. https://doi.org/10.1002/btpr.2079

    Article  CAS  PubMed  Google Scholar 

  25. André S, Lagresle S, Da Sliva A, Heimendinger P, Hannas Z, Calvosa É, Duponchel L (2017) Developing global regression models for metabolite concentration prediction regardless of cell line. Biotechnol Bioeng 114:2550–2559. https://doi.org/10.1002/bit.26368

    Article  CAS  PubMed  Google Scholar 

  26. Craven S, Whelan J, Glennon B (2014) Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller. J Process Control 24:344–357. https://doi.org/10.1016/j.jprocont.2014.02.007

    Article  CAS  Google Scholar 

  27. Matthews T, Berry B, Smelko J, Moretto J, Moore B, Wiltberger K (2016) Closed loop control of lactate concentration in mammalian cell culture by Raman spectroscopy leads to improved cell density, viability, and biopharmaceutical protein production. Biotechnol Bioeng 113:2416–2424. https://doi.org/10.1002/bit.26018

    Article  CAS  PubMed  Google Scholar 

  28. Moore B, Sanford R, Zhang A (2019) Case study: the characterization and implementation of dielectric spectroscopy (biocapacitance) for process control in a commercial GMP CHO manufacturing process. Biotechnol Prog 35:e2782. https://doi.org/10.1002/btpr.2782

    Article  CAS  PubMed  Google Scholar 

  29. Cannizzaro C, Gügerli R, Marison I, von Stockar U (2003) On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy. Biotechnol Bioeng 84:597–610. https://doi.org/10.1002/bit.10809

    Article  CAS  PubMed  Google Scholar 

  30. Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Vikström C, Wold S (2006) Multi- and megavariate data analysis. Umetrics, Umea

    Google Scholar 

  31. Ducommun P, Kadouri A, von Stockar U, Marison I (2001) On-line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopy. Biotechnol Bioeng 77:316–323. https://doi.org/10.1002/bit.1197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Manufacturing Operations and Manufacturing Sciences teams at the Biogen Hillerod site. A grateful thanks to the Irish Research Council for funding. Also, thanks to Barry McCarthy, Ronan Hayes and the Janssen department—BioTherapeutic Development.

Funding

Irish Research Council. Grant Number: EPSPG/2015/150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Rafferty.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest for this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafferty, C., O’Mahony, J., Rea, R. et al. Raman spectroscopic based chemometric models to support a dynamic capacitance based cell culture feeding strategy. Bioprocess Biosyst Eng 43, 1415–1429 (2020). https://doi.org/10.1007/s00449-020-02336-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02336-2

Keywords

Navigation