Advertisement

Response of extracellular polymeric substances and enzymatic activity to salinity for the waste activated sludge anaerobic fermentation process

  • Baodan JinEmail author
  • Jintao Niu
  • Ju Zhang
  • Jiahui Niu
  • Ping Zhou
  • Jingwen Dai
  • Nuonan Li
  • Hongfan Tao
  • Zhigang Ma
  • Zhongfang Zhang
Rapid Communication
  • 18 Downloads

Abstract

Salinity (NaCl) was used in waste activated sludge (WAS) anaerobic fermentation system which had been presented to greatly enhance the extracellular polymeric substance (EPS) production including protein and polysaccharide and short-chain fatty acids (SCFAs). Salinity enhanced soluble protein and polysaccharide (SB-EPS) release which was 4.04 times (protein) and 1.83 times (polysaccharide) compared to 0 g/L NaCl level. More important, salinity restrained the coenzyme 420 activity (F420), but increased the hydrolase activity. Abundant hydrolysis of substrate and highly active hydrolase led to abundant SCFA production. Pearson correlation coefficient showed that the protein became the main reaction substrate for SCFA generation.

Graphic abstract

Keywords

Waste activated sludge Salinity Extracellular polymeric substances Biological enzyme 

Notes

Acknowledgements

The authors are grateful to the doctoral foundation and incubation project of Zhengzhou University of Light Industry (13501050052, 2018ZCKJ201), also supported by the foundation of Henan province natural science (182300410140).

References

  1. 1.
    Association C, Washington D (1995) Standard methods for the examination of water and wastewater. Am Phys Educ Rev 24(9):481–486Google Scholar
  2. 2.
    Chen YG, Jiang S, Yuan HY, Zhou Q, Gu GW (2007) Hydrolysis and acidification of waste activated sludge at different pHs. Water Res 41(3):683–689CrossRefGoogle Scholar
  3. 3.
    Chrost RJ, Siuda W, Albrecht D, Overbeck J (1986) A method for determining enzymatically hydrolysable phosphate (EHP) in natural waters. Limnol Oceanogr 31(3):662–667CrossRefGoogle Scholar
  4. 4.
    Delafontaine M, Naveau H, Nyns E-J (1979) Fluorimetric monitoring of methanogenesis in anaerobic digestors. Biotech Lett 1(2):71–74CrossRefGoogle Scholar
  5. 5.
    Goel R, Mino T, Satoh H, Matsuo T (1998) Enzyme activities under anaerobic and aerobic conditions in activated sludge sequencing batch reactor. Water Res 32(7):2081–2088CrossRefGoogle Scholar
  6. 6.
    Hao J, Wang H (2015) Volatile fatty acids productions by mesophilic and thermophilic sludge fermentation: Biological responses to fermentation temperature. Bioresour Technol 175:367–373CrossRefGoogle Scholar
  7. 7.
    He ZW, Liu WZ, Wang L, Yang CX, Guo ZC, Zhou AJ, Liu JY, Wang AJ (2016) Role of extracellular polymeric substances in enhancement of phosphorus release from waste activated sludge by rhamnolipid addition. Bioresour Technol 202:59–66CrossRefGoogle Scholar
  8. 8.
    Hong J, Li X (2011) Environmental assessment of sewage sludge as secondary raw material in cement production—a case study in China. Waste Manag 31(6):1364CrossRefGoogle Scholar
  9. 9.
    Huang X, Shen C, Liu J, Lu L (2015) Improved volatile fatty acid production during waste activated sludge anaerobic fermentation by different bio-surfactants. Chem Eng J 264:280–290CrossRefGoogle Scholar
  10. 10.
    Jin B, Niu J, Dai J, Li N, Zhou P, Niu J, Zhang J, Tao H, Ma Z, Zhang Z (2018) New insights into the enhancement of biochemical degradation potential from waste activated sludge with low organic content by potassium monopersulfate treatment. Bioresour Technol 265:8–16CrossRefGoogle Scholar
  11. 11.
    Jin B, Wang S, Xing L, Li B, Peng Y (2016) Effect of salinity on enhancing waste activated sludge alkaline fermentation at different temperatures. Clean Soil Air Water 44:1750–1758CrossRefGoogle Scholar
  12. 12.
    Kloeke FVO, Geesey GG (1999) Localization and identification of populations of phosphatase-active bacterial cells associated with activated sludge flocs. Microb Ecol 38(3):201–214CrossRefGoogle Scholar
  13. 13.
    Li X, Peng Y, Ren N, Li B, Chai T, Zhang L (2014) Effect of temperature on short chain fatty acids (SCFAs) accumulation and microbiological transformation in sludge alkaline fermentation with Ca (OH) 2 adjustment. Water Res 61:34–45CrossRefGoogle Scholar
  14. 14.
    Liao H, Xu Z, Zeng XJ (2015) Novel correlation coefficients between hesitant fuzzy sets and their application in decision making. Knowl-Based Syst 82(3):115–127CrossRefGoogle Scholar
  15. 15.
    Liu XM, Sheng GP, Luo HW, Feng Z, Yuan SJ, Xu J, Zeng RJ, Wu JG, Yu HQ (2010) Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environ Sci Technol 44(11):4355–4360CrossRefGoogle Scholar
  16. 16.
    Ma C, Jin R-C, Yang G-F, Yu J-J, Xing B-S, Zhang Q-Q (2012) Impacts of transient salinity shock loads on Anammox process performance. Biores Technol 112:124–130CrossRefGoogle Scholar
  17. 17.
    Moussa M, Sumanasekera D, Ibrahim S, Lubberding H, Hooijmans C, Gijzen H, Van Loosdrecht M (2006) Long term effects of salt on activity, population structure and floc characteristics in enriched bacterial cultures of nitrifiers. Water Res 40(7):1377–1388CrossRefGoogle Scholar
  18. 18.
    Oh G, Zhang L, Jahng D (2008) Osmoprotectants enhance methane production from the anaerobic digestion of food wastes containing a high content of salt. J Chem Technol Biotechnol 83(9):1204–1210CrossRefGoogle Scholar
  19. 19.
    Rene ER, Kim SJ, Park HS (2008) Effect of COD/N ratio and salinity on the performance of sequencing batch reactors. Biores Technol 99(4):839–846CrossRefGoogle Scholar
  20. 20.
    Rinzema A, van Lier J, Lettinga G (1988) Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor. Enzyme Microb Technol 10(1):24–32CrossRefGoogle Scholar
  21. 21.
    Sobeck DC, Higgins MJ (2002) Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res 36(3):527–538CrossRefGoogle Scholar
  22. 22.
    Tyagi SK (2015) Correlation coefficient of dual hesitant fuzzy sets and its applications. Appl Math Model 39(22):7082–7092CrossRefGoogle Scholar
  23. 23.
    Vallero MVG, Hulshoff Pol LW, Lettinga G, Lens PNL (2003) Effect of NaCl on thermophilic (55°C) methanol degradation in sulfate reducing granular sludge reactors. Water Res 37(10):2269–2280CrossRefGoogle Scholar
  24. 24.
    Van OKF, Geesey GG (1999) Localization and identification of populations of phosphatase-active bacterial cells associated with activated sludge flocs. Microb Ecol 38(3):201CrossRefGoogle Scholar
  25. 25.
    Vyrides I, Santos H, Mingote A, Ray M, Stuckey D (2010) Are compatible solutes compatible with biological treatment of saline wastewater? Batch and continuous studies using submerged anaerobic membrane bioreactors (SAMBRs). Environ Sci Technol 44(19):7437–7442CrossRefGoogle Scholar
  26. 26.
    Wang Z, Gao M, Wang Z, She Z, Chang Q, Sun C, Zhang J, Ren Y, Yang N (2013) Effect of salinity on extracellular polymeric substances of activated sludge from an anoxic–aerobic sequencing batch reactor. Chemosphere 93(11):2789–2795CrossRefGoogle Scholar
  27. 27.
    Yan S, Miyanaga K, Xing X-H, Tanji Y (2008) Succession of bacterial community and enzymatic activities of activated sludge by heat-treatment for reduction of excess sludge. Biochem Eng J 39(3):598–603CrossRefGoogle Scholar
  28. 28.
    Ye F, Liu X, Li Y (2012) Effects of potassium ferrate on extracellular polymeric substances (EPS) and physicochemical properties of excess activated sludge. J Hazard Mater 199–200(2):158–163CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Baodan Jin
    • 1
    Email author
  • Jintao Niu
    • 2
  • Ju Zhang
    • 1
  • Jiahui Niu
    • 1
  • Ping Zhou
    • 1
  • Jingwen Dai
    • 1
  • Nuonan Li
    • 1
  • Hongfan Tao
    • 1
  • Zhigang Ma
    • 1
  • Zhongfang Zhang
    • 1
  1. 1.Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical EngineeringZhengzhou University of Light IndustryZhengzhouChina
  2. 2.Henan Hengan Environmental Protection Technology Co., Ltd.ZhengzhouChina

Personalised recommendations