Advertisement

Competitive adsorption of vanillin and syringaldehyde on a macro-mesopore polymeric resin: modeling

  • Hanfei Cao
  • Yingchun Ji
  • Jingwei Zhou
  • Wei Zhuang
  • Huanqing Niu
  • Nan Gao
  • Yong Chen
  • Dong Liu
  • Chenjie Zhu
  • Xioachun Chen
  • Hanjie YingEmail author
  • Jinglan WuEmail author
Research Paper
  • 75 Downloads

Abstract

Vanillin and syringaldehyde are widely used as flavoring and fragrance agents in the food products. The potential of a macro-mesoporous adsorption resin was assessed for separation of these binary mixtures. This work focuses on modeling of the competitive adsorption behaviors and exploration of the adsorption mechanism. The characterization results showed the resin had a large BET surface area and specific pore structure with hydrophobic properties. By analysis of the physicochemical properties of the solutes and the resin, the separation mechanism was mainly contributed by hydrophobic effect. Subsequently, the competitive Langmuir isotherm model was used to fit the competitive adsorption isotherms. The pore diffusion coefficient was obtained by macropore diffusion model. Afterwards, a mathematical model was established to predict the breakthrough curves of the binary mixture at various operating conditions. The data and model presented are valuable for design and simulation of the continuous chromatographic separation process.

Keywords

Vanillin Syringaldehyde Competitive adsorption Macro-mesopore resin Modeling 

Notes

Acknowledgements

This project was supported in part by the National Basic Research Program of China (973) (2013CB733602). We would also like to acknowledge the financial support provided by 21390204, IRT_14R28, 21636003, PAPD, 21606128, 2017YFD0400402, and BK20151452.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Broeren MLM, Zijp MC, Loop WVD, Heugens EHW, Posthuma L, Worrell E (2017) Environmental assessment of bio-based chemicals in early-stage development: a review of methods and indicators. Biofuels Bioprod Biorefin 11:701–719.  https://doi.org/10.1002/bbb.1772 CrossRefGoogle Scholar
  2. 2.
    Kawaguchi H, Hasunuma T, Ogino C, Kondo A (2016) Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol 42:30–40.  https://doi.org/10.1016/j.copbio.2016.02.031 CrossRefGoogle Scholar
  3. 3.
    Pleissner D, Qi QS, Gao CJ, Rivero CP, Webb C, Lin CSK, Venus J (2016) Valorization of organic residues for the production of added value chemicals: a contribution to the bio-based economy. Biochem Eng J 116:3–17.  https://doi.org/10.1016/j.bej.2015.12.016 CrossRefGoogle Scholar
  4. 4.
    Vasco-Correa J, Khanal S, Manandhar A, Shah A (2017) Anaerobic digestion for bioenergy production: Global status, environmental and techno-economic implications, and government policies. Bioresour Technol 247:1015–1026.  https://doi.org/10.1016/j.biortech.2017.09.004 CrossRefGoogle Scholar
  5. 5.
    Roopan SM (2017) An overview of natural renewable bio-polymer lignin towards nano and biotechnological applications. Int J Bio Macromol 103:508–515.  https://doi.org/10.1016/j.ijbiomac.2017.05.103 CrossRefGoogle Scholar
  6. 6.
    Mota MIF, Pinto PCR, Loureiro JM, Rodrigues AE (2016) Adsorption of vanillin and syringaldehyde onto a macroporous polymeric resin. Chem Eng J 288:869–880.  https://doi.org/10.1016/j.cej.2015.12.041 CrossRefGoogle Scholar
  7. 7.
    Pinto PCR, Costa CE, Rodrigues AE (2013) Oxidation of lignin from eucalyptus globulus pulping liquors to produce syringaldehyde and vanillin. Ind Eng Chem Res 52:4421–4429.  https://doi.org/10.1021/ie303349j CrossRefGoogle Scholar
  8. 8.
    Pinto PCR, Silva EAB, Rodrigues AE (2012) Lignin as source of fine chemicals: vanillin and syringaldehyde. In: Baskar C, Baskar S, Dhillon RS (eds) Biomass coversion. Springer, Berlin Heidelberg, London, pp 381–420.  https://doi.org/10.1007/978-3-642-28418-2_12 CrossRefGoogle Scholar
  9. 9.
    Kumar R, Sharma PK, Mishra PS (2012) A review on the vanillin derivatives showing various biological activities. Int J PharmTech Res 4:266–276Google Scholar
  10. 10.
    Kayaci F, Uyar T (2012) Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin. Food Chem 133:641–650.  https://doi.org/10.1016/j.foodchem.2012.01.040 CrossRefGoogle Scholar
  11. 11.
    Lirdprapamongkol K, Kramb JP, Suthiphongchai T, Surarit R, Srisomsap C, Dannhardt G, Svasti J (2009) Vanillin suppresses metastatic potential of human cancer cells through PI3K inhibition and decreases angiogenesis in vivo. J Agric Food Chem 57:3055–3063CrossRefGoogle Scholar
  12. 12.
    Ren SY, Wu ZH, Guo QX, Shen BJ (2015) Zeolites as shape-selective catalysts: highly selective synthesis of vanillin from reimer–tiemann reaction of guaiacol and chloroform. Catal Lett 145:712–715.  https://doi.org/10.1007/s10562-014-1456-5 CrossRefGoogle Scholar
  13. 13.
    Cortez DV, Roberto IC (2010) Improved xylitol production in media containing phenolic aldehydes: application of response surface methodology for optimization and modeling of bioprocess. J Chem Technol Biotechnol 85:33–39.  https://doi.org/10.1002/jctb.2265 CrossRefGoogle Scholar
  14. 14.
    Xiang Q, Lee YY (2001) Production of oxychemicals from precipitated hardwood lignin, Appl. Biochem Biotechnol A Enzyme Eng Biotechnol 91–93:71–80.  https://doi.org/10.1385/ABAB:91-93:1-9:71 CrossRefGoogle Scholar
  15. 15.
    Araujo JDP, Grande CA, Rodrigues AE (2010) Vanillin production from lignin oxidation in a batch reactor. Chem Eng Res Des 88:1024–1033.  https://doi.org/10.1016/j.cherd.2010.01.021 CrossRefGoogle Scholar
  16. 16.
    Voitl T, Von Rohr PR (2009) Demonstration of a process for the conversion of kraft lignin into vanillin and methyl vanillate by acidic oxidation in aqueous methanol. Ind Eng Chem Res 49:520–525CrossRefGoogle Scholar
  17. 17.
    Tarabanko VE, Koropatchinskaya NV, Kudryashev AV, Kuznetsov BN (1995) Influence of lignin origin on the efficiency of the catalytic oxidation of lignin into vanillin and syringaldehyde. Russ Chem Bull 44:367–371.  https://doi.org/10.1007/BF00702154 CrossRefGoogle Scholar
  18. 18.
    Mathias AL, Lopretti MI, Rodrigues AE (1995) Chemical and biological oxidation of Pinus pinaster lignin of the production of vanillin. J Chem Technol Biotechnol 64:225–234.  https://doi.org/10.1002/jctb.280640303 CrossRefGoogle Scholar
  19. 19.
    Araujo JDP, Grande CA, Rodrigues AE (2009) Structured packed bubble column reactor for continuous production of vanillin from Kraft lignin oxidation. Catal Today 147:S330–S336.  https://doi.org/10.1016/j.cattod.2009.07.016 CrossRefGoogle Scholar
  20. 20.
    Tarabanko VE, Chelbina YV, Kudryashev AV, Tarabanko NV (2013) Separation of Vanillin and syringaldehyde produced from lignins. Sci Technol 48:127–133.  https://doi.org/10.1080/01496395.2012.673671 Google Scholar
  21. 21.
    Zidi C, Jamrah A (2013) Kinetic and stability studies on phenol and vanillin facilitated transport through a supported liquid membrane (SLM). Int J Innov Res Sci Eng Technol 2:7360–7368CrossRefGoogle Scholar
  22. 22.
    Žabková M, Silva EAB, Rodrigues AE (2007) Recovery of vanillin from lignin/vanillin mixture by using tubular ceramic ultrafiltration membranes. J Membr Sci 301:221–238.  https://doi.org/10.1016/j.memsci.2007.06.025 CrossRefGoogle Scholar
  23. 23.
    Mota MIF, Pinto PCR, Ribeiro AM, Loureiro JM, Rodrigues AE (2018) Downstream processing of an oxidized industrial kraft liquor by membrane fractionation for vanillin and syringaldehyde recovery. Purif Technol 197:360–371.  https://doi.org/10.1016/j.seppur.2018.01.001 CrossRefGoogle Scholar
  24. 24.
    Gomes ED, Mota MIF, Rodrigues AE (2018) Fractionation of acids, ketones and aldehydes from alkaline lignin oxidation solution with SP700 resin. Purif Technol 194:256–264CrossRefGoogle Scholar
  25. 25.
    Stanford JP, Hall PH, Rover MR, Smith RG, Brown RC (2018) Separation of sugars and phenolics from the heavy fraction of bio-oil using polymeric resin adsorbents. Purif Technol 194:170–180CrossRefGoogle Scholar
  26. 26.
    Töppel O (1959) Method for the separation of carbonyl compounds. U.S. Patent 2897238, July 28Google Scholar
  27. 27.
    Mota MIF, Pinto PCR, Loureiro JM, Rodrigues AE (2016) Successful recovery and concentration of vanillin and syringaldehyde onto a polymeric adsorbent with ethanol/water solution. Chem Eng J 294:73–82.  https://doi.org/10.1016/j.cej.2016.02.101 CrossRefGoogle Scholar
  28. 28.
    Wang ZJ, Chen KF, Li J, Wang QQ, Guo J (2010) Separation of vanillin and syringaldehyde from oxygen delignification spent liquor by macroporous resin adsorption. Clean Soil Air Water 38:1074–1079CrossRefGoogle Scholar
  29. 29.
    Yao CY, Chen JL, Lu YH, Tang SK, Fan EG (2018) Construction of an asynchronous three-zone simulated-moving-bed chromatography and its application for the separation of vanillin and syringaldehyde. Chem Eng J 331:644–651.  https://doi.org/10.1016/j.cej.2017.09.006 CrossRefGoogle Scholar
  30. 30.
    Silva EAB, Zabkova M, Araujo JD, Cateto CA, Barreiro MF, Belgacem MN, Rodrigues AE (2009) An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem Eng Res Design 87:1276–1293.  https://doi.org/10.1016/j.cherd.2009.05.008 CrossRefGoogle Scholar
  31. 31.
    Mathias A, Lrodrigues AE (1995) Production of vanillin by oxidation of pine kraft lignins with oxygen. Holzforschung 49:273–279.  https://doi.org/10.1515/hfsg.1995.49.3.273 CrossRefGoogle Scholar
  32. 32.
    Wong ZJ, Chen KF, Li J (2010) Formation of vanillin and syringaldehyde in an oxygen delignification process. BioResources 5:1509Google Scholar
  33. 33.
    Ying H (2019) Preparation method and application for ultra-high crosslinking resin [P], China:CN201610488995.X,2016Google Scholar
  34. 34.
    Guiochon G, Shirazi SG, Katti AM (1995) Fundamentals of preparative and nonlinear chromatography, vol 302. Academic Press, Massachusetts, pp 127–128.  https://doi.org/10.1016/0003-2670(95)90109-4 Google Scholar
  35. 35.
    Kleinuebing SJ, Guibal E, Silva EA, Silva MGC (2011) Copper and nickel competitive biosorption simulation from single and binary systems by Sargassum filipendula. Chem Eng J 184:16–22.  https://doi.org/10.1016/j.cej.2011.11.023 CrossRefGoogle Scholar
  36. 36.
    Suzuki M, Smith JM (1972) Axial dispersion in beds of small particles. Chem Eng J 3:256–264.  https://doi.org/10.1016/0300-9467(72)85029-9 CrossRefGoogle Scholar
  37. 37.
    Sulaymon AH, Kawther W (2007) Competitive adsorption of furfural and phenolic compounds onto activated carbon in fixed bed column. Environ Sci Technol 42:392–397CrossRefGoogle Scholar
  38. 38.
    Michailof C, Stavropoulos GG, Panayiotou C (2008) Enhanced adsorption of phenolic compounds, commonly encountered in olive mill wastewaters, on olive husk derived activated carbons. Bioresour Technol 99:6400–6409.  https://doi.org/10.1016/j.biortech.2007.11.057 CrossRefGoogle Scholar
  39. 39.
    Lu YB, Alain B, Hu RL, Ma WY, Pan YJ (2009) Screening of complex natural extracts by countercurrent chromatography using a parallel protocol. Anal Chem (Washington) 81:4048–4059CrossRefGoogle Scholar
  40. 40.
    Zhou JW, Wu JL, Liu YN, Zou FX, Wu J, Li KF, Chen Y, Xie JJ, Ying HJ (2013) Modeling of breakthrough curves of single and quaternary mixtures of ethanol, glucose, glycerol and acetic acid adsorption onto a microporous hyper-cross-linked resin. Bioresour Technol 143:360–369.  https://doi.org/10.1016/j.biortech.2013.06.009 CrossRefGoogle Scholar
  41. 41.
    Kumar P, Lau PW, Kale S, Johnson S, Pareek V, Utikar R, Lali A (2014) Kafirin adsorption on ion-exchange resins: isotherm and kinetic studies. J Chromatog A 1356:105–117.  https://doi.org/10.1016/j.chroma.2014.06.035 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hanfei Cao
    • 1
    • 2
    • 3
  • Yingchun Ji
    • 1
    • 2
    • 3
  • Jingwei Zhou
    • 1
    • 2
    • 3
  • Wei Zhuang
    • 1
    • 2
    • 3
  • Huanqing Niu
    • 1
    • 2
    • 3
  • Nan Gao
    • 1
    • 2
    • 3
  • Yong Chen
    • 1
    • 2
    • 3
  • Dong Liu
    • 1
    • 2
    • 3
  • Chenjie Zhu
    • 1
    • 2
    • 3
  • Xioachun Chen
    • 1
    • 2
    • 3
  • Hanjie Ying
    • 1
    • 2
    • 3
    • 4
    Email author
  • Jinglan Wu
    • 1
    • 2
    • 3
    Email author
  1. 1.College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
  2. 2.National Engineering Technique Research Center for BiotechnologyNanjingChina
  3. 3.Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjingChina
  4. 4.State Key Laboratory of Materials-Oriented Chemical EngineeringNanjingChina

Personalised recommendations