Advertisement

Functionalized kaolin as support for endoglucanase immobilization

  • Janaina de Souza Lima
  • Flávia Nunes Costa
  • Marcos Antônio Bastistella
  • Pedro Henrique Hermes de Araújo
  • Débora de OliveiraEmail author
Research Paper
  • 24 Downloads

Abstract

Endoglucanases are an enzyme of cellulases complex that has a great potential for many technological applications. One of the issues of its use concerns the recovery and reuse of this enzyme. Thus, in this study, the use of a surface-modified kaolin was evaluated to immobilize endoglucanase and evaluate the enzyme activity for its reuse. Kaolin was surface modified with 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA). In addition, the properties of the immobilized enzyme were investigated and compared with those of the free enzyme. Results showed that the optimal pH value of endoglucanase was not affected by the immobilization process but showed a broader range of optimal temperature compared to free enzyme. Immobilization on kaolin allowed fast and easy cellulase recovery with a loss of enzyme activity of only 20% after eight cycles of use. These results indicate that kaolin is a promising substitute to the currently synthetic supports studied for cellulases immobilization with the advantage of being abundant in nature, resistant to microbial attack, chemically and mechanically stable.

Keywords

Endoglucanase Immobilized cellulase Enzyme immobilization Kaolin 

Notes

Acknowledgements

The authors would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support, as well as Laboratório Central de Microscopia Eletrônica at UFSC (LCME-UFSC) for TEM and SEM analyses.

References

  1. 1.
    Henrissat B (1994) Cellulases and their interaction with cellulose. Cellulose 1:169–196CrossRefGoogle Scholar
  2. 2.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRefGoogle Scholar
  3. 3.
    Zhang XZ, Zhang YHP (2013) Cellulases: characteristics, sources, production, and applications.In: Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers, Wiley, Hoboken, pp 131–146CrossRefGoogle Scholar
  4. 4.
    Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial cellulases in industrial applications. Ann Appl Bio-Sci 3:R23–R29Google Scholar
  5. 5.
    Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307CrossRefGoogle Scholar
  6. 6.
    Homaei AA, Sariri R, Vianello F, Stevanato R (2013) Enzyme immobilization: an update. J Chem Biol 6:185–205CrossRefGoogle Scholar
  7. 7.
    Eş I, Vieira JDG, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99:2065–2082CrossRefGoogle Scholar
  8. 8.
    Torres-Salas P, del Monte-Martinez A, Cutiño-Avila B, Rodriguez-Colinas B, Alcalde M, Ballesteros AO, Plou FJ (2011) Immobilized biocatalysts: novel approaches and tools for binding enzymes to supports. Adv Mater 23:5275–5282CrossRefGoogle Scholar
  9. 9.
    Saleem M, Rashid M, Jabbar A, Perveen R, Khalid A, Rajoka M (2005) Kinetic and thermodynamic properties of an immobilized endoglucanase from Arachniotus citrinus. Process Biochem 40:849–855CrossRefGoogle Scholar
  10. 10.
    Ince A, Bayramoglu G, Karagoz B, Altintas B, Bicak N, Arica MY (2012) A method for fabrication of polyaniline coated polymer microspheres and its application for cellulase immobilization. Chem Eng J 189:404–412CrossRefGoogle Scholar
  11. 11.
    Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels 7:1–12CrossRefGoogle Scholar
  12. 12.
    Mubarak N, Wong J, Tan K, Sahu J, Abdullah E, Jayakumar N, Ganesan P (2014) Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes. J Mol Catal B Enzym 107:124–131CrossRefGoogle Scholar
  13. 13.
    Sánchez-Ramírez J, Martínez-Hernández JL, Segura-Ceniceros P, López G, Saade H, Medina-Morales MA, Ramos-González R, Aguilar CN, Ilyina A (2017) Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave Atrovirens lignocellulosic biomass hydrolysis. Bioprocess Biosyst Eng 40:9–22CrossRefGoogle Scholar
  14. 14.
    Zang L, Qiu J, Wu X, Zhang W, Sakai E, Wei Y (2014) Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind Eng Chem Res 53:3448–3454CrossRefGoogle Scholar
  15. 15.
    Qi H, Duan H, Wang X, Meng X, Yin X, Ma L (2015) Preparation of magnetic porous terpolymer and its application in cellulase immobilization. Polym Eng Sci 55:1039–1045CrossRefGoogle Scholar
  16. 16.
    Lima JS, Araújo PHH, Sayer C, Souza AAU, Viegas AC, de Oliveira D (2017) Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres. Bioprocess Biosyst Eng 40:511–518CrossRefGoogle Scholar
  17. 17.
    Gao J, Lu C-L, Wang Y, Wang S-S, Shen J-J, Zhang J-X, Zhang Y-W (2018) Rapid immobilization of cellulase onto graphene oxide with a hydrophobic spacer. Catalysts 8:180 (2073-4344)Google Scholar
  18. 18.
    Wang Y, Chen D, Wang G, Zhao C, Ma Y, Yang W (2018) Immobilization of cellulase on styrene/maleic anhydride copolymer nanoparticles with improved stability against pH changes. Chem Eng J 336:152–159CrossRefGoogle Scholar
  19. 19.
    Su L, Zeng X, He H, Tao Q, Komarneni S (2017) Preparation of functionalized kaolinite/epoxy resin nanocomposites with enhanced thermal properties. Appl Clay Sci 148:103–108CrossRefGoogle Scholar
  20. 20.
    Zdarta J, Meyer AS, Jesionowski T, Pinelo M (2018) A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8:92CrossRefGoogle Scholar
  21. 21.
    Sinegani AAS, Emtiazi G, Shariatmadari H (2005) Sorption and immobilization of cellulase on silicate clay minerals. J Colloid Interface Sci 290:39–44CrossRefGoogle Scholar
  22. 22.
    Karagulyan HK, Gasparyan VK, Decker SR (2008) Immobilization of fungal β-glucosidase on silica gel and kaolin carriers. Appl Biochem Biotechnol 146:39–47CrossRefGoogle Scholar
  23. 23.
    Linder M, Mattinen M-L, Kontteli M, Lindeberg G, Ståhlberg J, Drakenberg T, Reinikainen T, Pettersson G, Annila A (1995) Identification of functionally important amino acids in the cellulose-binding domain of Trichoderma reesei cellobiohydrolase I. Protein Sci 4:1056–1064CrossRefGoogle Scholar
  24. 24.
    Ghose T, Bisaria V (1979) Studies on the mechanism of enzymatic hydrolysis of cellulosic substances. Biotechnol Bioeng 21:131–146CrossRefGoogle Scholar
  25. 25.
    Xu J, Sun J, Wang Y, Sheng J, Wang F, Sun M (2014) Application of iron magnetic nanoparticles in protein immobilization. Molecules 19:11465–11486CrossRefGoogle Scholar
  26. 26.
    Kahraman MV, Bayramoğlu G, Kayaman-Apohan N, Güngör A (2007) α-Amylase immobilization on functionalized glass beads by covalent attachment. Food Chem 104:1385–1392CrossRefGoogle Scholar
  27. 27.
    Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37:790–806CrossRefGoogle Scholar
  28. 28.
    Gunda NSK, Singh M, Norman L, Kaur K, Mitra SK (2014) Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl) triethoxysilane (APTES) and glutaraldehyde linker. Appl Surf Sci 305:522–530CrossRefGoogle Scholar
  29. 29.
    Barbosa O, Torres R, Ortiz C, Berenguer-Murcia Á, Rodrigues RC, Fernandez-Lafuente R (2013) Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules 14:2433–2462CrossRefGoogle Scholar
  30. 30.
    Hernandez K, Fernandez-Lafuente R (2011) Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb Technol 48:107–122CrossRefGoogle Scholar
  31. 31.
    Xu J, Huo S, Yuan Z, Zhang Y, Xu H, Guo Y, Liang C, Zhuang X (2011) Characterization of direct cellulase immobilization with superparamagnetic nanoparticles. Biocatal Biotransform 29:71–76CrossRefGoogle Scholar
  32. 32.
    Yu Y, Yuan J, Wang Q, Fan X, Wang P, Cui L (2014) A promising approach for bio-finishing of cotton using immobilized acid-cellulase. Fibers Polym 15:932–937CrossRefGoogle Scholar
  33. 33.
    Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307CrossRefGoogle Scholar
  34. 34.
    Secundo F (2013) Conformational changes of enzymes upon immobilisation. Chem Soc Rev 42:6250–6261CrossRefGoogle Scholar
  35. 35.
    Zhang W, Qiu J, Feng H, Zang L, Sakai E (2015) Increase in stability of cellulase immobilized on functionalized magnetic nanospheres. J Magn Magn Mater 375:117–123CrossRefGoogle Scholar
  36. 36.
    Zhou J (2010) Immobilization of cellulase on a reversibly soluble—insoluble support: properties and application. J Agric Food Chem 58:6741–6746CrossRefGoogle Scholar
  37. 37.
    Lin Y, Liu X, Xing Z, Geng Y, Wilson J, Wu D, Kong H (2017) Preparation and characterization of magnetic Fe 3 O 4-chitosan nanoparticles for cellulase immobilization. Cellulose 24:5541–5550CrossRefGoogle Scholar
  38. 38.
    Hung T-C, Fu C-C, Su C-H, Chen J-Y, Wu W-T, Lin Y-S (2011) Immobilization of cellulase onto electrospun polyacrylonitrile (PAN) nanofibrous membranes and its application to the reducing sugar production from microalgae. Enzyme Microb Technol 49:30–37CrossRefGoogle Scholar
  39. 39.
    Hartono SB, Qiao SZ, Liu J, Jack K, Ladewig BP, Hao Z, Lu GQM (2010) Functionalized mesoporous silica with very large pores for cellulase immobilization. J Phys Chem C 114:8353–8362CrossRefGoogle Scholar
  40. 40.
    Simon P, Lima JS, Valério A, Oliveira Dd, Araújo PH, Sayer C, Souza AAUd, Souza S (2018) Cellulase immobilization on poly(methyl methacrylate) nanoparticles by miniemulsion polymerization. Braz J Chem Eng 35:649–658CrossRefGoogle Scholar
  41. 41.
    Ó’Fágáin C (2003) Enzyme stabilization—recent experimental progress. Enzyme Microbial Technol 33:137–149CrossRefGoogle Scholar
  42. 42.
    Zhang D, Hegab HE, Lvov Y, Dale Snow L, Palmer J (2016) Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer. SpringerPlus 5:1–20CrossRefGoogle Scholar
  43. 43.
    Mishra A, Sardar M (2015) Cellulase assisted synthesis of nano-silver and gold: application as immobilization matrix for biocatalysis. Int J Biol Macromol 77:105–113CrossRefGoogle Scholar
  44. 44.
    Wu L, Yuan X, Sheng J (2005) Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J Membr Sci 250:167–173CrossRefGoogle Scholar
  45. 45.
    Yu Y, Yuan J, Wang Q, Fan X, Ni X, Wang P, Cui L (2013) Cellulase immobilization onto the reversibly soluble methacrylate copolymer for denim washing. Carbohyd Polym 95:675–680CrossRefGoogle Scholar
  46. 46.
    Yang C, Mo H, Zang L, Chen J, Wang Z, Qiu J (2016) Surface functionalized natural inorganic nanorod for highly efficient cellulase immobilization. R Soc Chem Adv 6:76855–76860Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Janaina de Souza Lima
    • 1
  • Flávia Nunes Costa
    • 1
  • Marcos Antônio Bastistella
    • 1
  • Pedro Henrique Hermes de Araújo
    • 1
  • Débora de Oliveira
    • 1
    Email author
  1. 1.Department of Chemical and Food EngineeringFederal University of Santa Catarina (UFSC)FlorianópolisBrazil

Personalised recommendations