Highly efficient synthesis of boldenone from androst-4-ene-3,17-dione by Arthrobacter simplex and Pichia pastoris ordered biotransformation

  • Rui Tang
  • Yanbing ShenEmail author
  • Min WangEmail author
  • Haijie Zhou
  • Yunqiu Zhao
Research Paper


Boldenone (BD) is an important steroid hormone drug which is the derivative of testosterone. In this study, an ordered biotransformation method was proposed employing Arthrobacter simplex and recombinant Pichia pastoris with 17β-hydroxysteroid dehydrogenase from Saccharomyces cerevisiae to produce BD from androst-4-ene-3,17-dione (AD) efficiently. To lower the oxidation towards BD in A. simplex, the transformation was conducted sequentially by C1,2 dehydrogenation in A. simplex and 17β-carbonyl reduction in recombinant P. pastoris GS115. Moreover, the reaction system was inactivated before recombinant P. pastoris GS115 was added to further inhibit the oxidation of BD by A. simplex, and the productivity of BD was improved 10.6% compared with the control. Furthermore, by optimizing the conditions of transformation from AD to BD, 4.2 g/L BD was generated with 83% productivity from 5.0 g/L AD, which was the highest productivity reported by biological method. This study offers a promising method to produce BD by ordered biotransformation system, which can also be used to manufacture other steroidal compounds that are difficult to acquire directly.


Ordered biotransformation Steroid Boldenone Arthrobacter simplex Pichia pastoris 



This work was supported by the National Natural Science Foundation of China (21276196 and 21406167), Tianjin Municipal Science and Technology Commission (17PTGCCX00190), the Innovative Research Team of Tianjin Municipal Education Commision (TD13-5013), and Tianjin Municipal Science and Technology Commission (16JCQNJC09100).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Donova MV, Egorova OV, Nikolayeva VM (2005) Steroid 17β-reduction by microorganism—a review. Process Biochem 40:2253–2262CrossRefGoogle Scholar
  2. 2.
    Faramarzi MA, Zolfaghary N, Yazdi MT, Adrangi S, Rastegar H, Amini M, Badiee M (2010) Microbial conversion of androst-1,4-dien-3,17-dione by Mucor racemosus to hydroxysteroid-1,4-dien-3-one derivatives. J Chem Technol Biotechnol 84:1021–1025CrossRefGoogle Scholar
  3. 3.
    Faramarzi MA, Yazdi MT, Ghostinroudi H, Amini M, Ghasemi Y, Jahandar H, Arabi H (2006) Nostoc muscorum: a regioselective biocatalyst for 17-carbonyl reduction of androst-4-en-3,17-dione and androst-1,4-dien-3,17-dione. Ann Microbiol 56:253–256CrossRefGoogle Scholar
  4. 4.
    Sarmah U, Roy MK, Singh HD (1989) Steroid transformation by a strain of Arthrobacter oxydans incapable of steroid ring degradation. J Basic Microbiol 29:85–92CrossRefGoogle Scholar
  5. 5.
    Tang R, Ji P, Yu Y, Yang X, Liu M, Chen K, Shen Y, Wang M (2016) Biotransformation to produce boldenone by Pichia pastoris GS115 engineered recombinant strains. Adv Appl Biotechnol 444:117–124CrossRefGoogle Scholar
  6. 6.
    Rong SF, Wang JW, Li QQ, Guan SM, Cai BG, Zhang S, Hu J (2017) The enhanced production of 11α-hydroxyandrosta-1,4-diene-3,17-dione based on the application of organic silica hollow spheres in the biotransformation of β-sitosterol. J Chem Technol Biot 92(1):69–75CrossRefGoogle Scholar
  7. 7.
    Parate R, Mane R, Dharne M, Rode C (2018) Mixed bacterial culture mediated direct conversion of bio-glycerol to diols. Bioresour Technol 250:86CrossRefGoogle Scholar
  8. 8.
    Chi X, Li JZ, Wang X, Zhang YF, Antwi P (2018) Hyper-production of butyric acid from delignified rice straw by a novel consolidated bioprocess. Bioresour Technol 254:115–120CrossRefGoogle Scholar
  9. 9.
    Winter J, Rourke-Locasio S, Bokkenheuser V, Mosbach E, Conen B (1984) Reduction of 17-keto steroids by anaerobic microorganisms isolated from human fecal flora. Biochim Biophys Acta 795:208–211CrossRefGoogle Scholar
  10. 10.
    Liu WH, Kuo CW, Wu KL, Lee CY, Hsu WY (1994) Transformation of cholesterol to testosterone by Mycobacterium sp. J Ind Microbiol 13:167–171CrossRefGoogle Scholar
  11. 11.
    Egorova OV, Nikolayeva VM, Donova MV (2002) 17-Hydroxysteroid dehydrogenases of Mycobacterium sp. VKM Ac-1815D mutant strain. J Steroid Biochem Mol Biol 81:273–279CrossRefGoogle Scholar
  12. 12.
    Egorova OV, Nikolayeva VM, Suzina NE, Donova MV (2005) Localization of 17β-hydroxysteroid dehydrogenase in Mycobacterium sp. VKM Ac-1815D mutant strain. J Steroid Biochem Mol Biol 94:519–525CrossRefGoogle Scholar
  13. 13.
    Madyastha K, Joseph T (1995) Transformation of dehydroepiandrosterone and pregnenolone by Mucor piriformis. Appl Microbiol Biotechnol 44:339–343CrossRefGoogle Scholar
  14. 14.
    Wilson M, Gallimore W, Reese P (1999) Steroid transformation with Fusarium oxysporum var. cubense and Colletotrichum musae. Steroids 64:834–843CrossRefGoogle Scholar
  15. 15.
    Lanisnik T, Adamski J, Stojan J (2000) 17β-Hydroxysteroid dehydrogenase from Cochliobolus lunatus: model structure and substrate specificity. Arch Biochem Biophys 15:255–262CrossRefGoogle Scholar
  16. 16.
    Choudhary M, Shah S, Musharraf S, Shaheen F, Atta-Ur-Rahman G (2003) Microbial transformation of dehydroepiandrosterone. Nat Prod Res 17:215–220CrossRefGoogle Scholar
  17. 17.
    Singer Y, Shity H, Bar R (1991) Microbial transformations in a cyclodextrin medium. Part 2. Reduction of androstenedione to testosterone by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 35:731–737CrossRefGoogle Scholar
  18. 18.
    Vico P, Cauet G, Rose K, Lathe R, Degryse E (2002) Dehydroepiandrosterone (DHEA) metabolism in Saccharomyces cerevisiae expressing mammalian steroid hydroxylase CYP7B: Ayr1p and Fox2p display 17β-hydroxysteroid dehydrogenase activity. Yeast 19:873–886CrossRefGoogle Scholar
  19. 19.
    Długonski J, Wilmanska D (1998) Deleterious effects of androstenedione on growth and cell morphology of Schizosaccharomyces pombe. Antonie van Leeuwenhoek Int J Gen 73:189–194CrossRefGoogle Scholar
  20. 20.
    Pajic T, Vitas M, Zigon D, Pavko A, Kelly SL, Komel R (1999) Biotransformation of steroids by the fission yeast Schizosaccharomyces pombe. Yeast 15:639–645CrossRefGoogle Scholar
  21. 21.
    Choi KP, Molnar I, Murooka Y (1995) Secretory overproduction of Arthrobacter simplex 3-ketosteroid-∆1-dehydrogenase by Streptomyces lividans with a multi-copy shuttle vector. Appl Microbiol Biotechnol 43:1044–1049CrossRefGoogle Scholar
  22. 22.
    Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94:1423–1447CrossRefGoogle Scholar
  23. 23.
    Shen Y, Wang M, Zhang L, Ma Y, Ma B, Zheng Y, Liu H, Luo J (2011) Effects of hydroxypropyl-β-cyclodextrin on cell growth, activity, and integrity of steroid-transforming Arthrobacter simplex and Mycobacterium sp. Appl Microbiol Biotechnol 90:1995–2003CrossRefGoogle Scholar
  24. 24.
    Zhang H, Tian Y, Wang J, Li Y, Wang H, Mao S, Liu X, Wang C, Bie S, Lu F (2013) Construction of engineered Arthrobacter simplex with improved performance for cortisone acetate biotransformation. Appl Microbiol Biotechnol 97:9503–9514CrossRefGoogle Scholar
  25. 25.
    Genti-Raimondi S, Tolmasky ME, Patrito LC, Flury A, Actis LA (1991) Molecular cloning and expression of the β-hydroxysteroid dehydrogenase gene from Pseudomonas testosteroni. Gene 105:43–49CrossRefGoogle Scholar
  26. 26.
    Cabrera JE, Paz JLP, Genti-Raimondi S (2000) Steroid-inducible transcription of the 3β/17β-hydroxysteroid dehydrogenase gene (3β/17β-hsd) in Comamonas testosteroni. J Steroid Biochem Mol Biol 73:147–152CrossRefGoogle Scholar
  27. 27.
    Fernandez-Cabezon L, Galan B, Garcia JL (2017) Engineering Mycobacterium smegmatis for testosterone production. Microb Biotechnol 10:73–75CrossRefGoogle Scholar
  28. 28.
    Wang M, Zhang LT, Shen YB, Ma YH, Zheng Y, Luo JM (2009) Effects of hydroxypropyl-β-cyclodextrin on steroids 1-en-dehydrogenation biotransformation by Arthrobacter simplex TCCC 11037. J Mol Catal B Enzym 59:58–63CrossRefGoogle Scholar
  29. 29.
    Shen YB, Wang M, Wang YL, Luo JM (2009) Effect of hydroxypropyl-β-cyclodextrin on the side-chain bioconversion of phytosterols by Mycobacterium sp. NRRL B-3683. Chem Eng Chin Univ 23:440–444Google Scholar
  30. 30.
    Donova MV (2007) Transformation of steroids by actinobacteria: a review. Appl Biochem Microbiol 43(1):1–14CrossRefGoogle Scholar
  31. 31.
    Malaviya A, Gomes J (2008) Androstenedione production by biotransformation of phytosterols. Bioresour Technol 99:6725–6737CrossRefGoogle Scholar
  32. 32.
    Lim SJ, Jung YM, Shin HD, Lee YH (2002) Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J Biosci Bioeng 93:543–549CrossRefGoogle Scholar
  33. 33.
    Siedler S, Bringer S, Bott M (2011) Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation. Appl Microbiol Biotechnol 92:929–937CrossRefGoogle Scholar
  34. 34.
    Jeon H, Durairaj P, Lee D, Ahsan MM, Yun H (2016) Improved NADPH regeneration for fungal cytochrome P450 monooxygenase by co-expressing bacterial glucose dehydrogenase in resting-cell biotransformation of recombinant yeast. J Microbiol Biotechnol 26:2076–2086CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of BiotechnologyTianjin University of Science and TechnologyTianjinPeople’s Republic of China

Personalised recommendations