Advertisement

Bioprocess and Biosystems Engineering

, Volume 42, Issue 5, pp 763–776 | Cite as

Optimization of microbial cell disruption using pressurized CO2 for improving lipid recovery from wet biomass

  • Md Shamim Howlader
  • Janice DuBien
  • El Barbary Hassan
  • Neeraj Rai
  • William Todd FrenchEmail author
Research Paper
  • 70 Downloads

Abstract

Microbial cell disruption using pressurized gases (e.g., CO2) is a promising approach to improve the lipid recovery from wet oleaginous microorganisms by eliminating the energy-intensive drying required for conventional methods. In this study, we perform cell disruption of Rhodotorula glutinis using pressurized CH4, N2, and Ar where we find the efficacy of these gases on cell viability is minimal. Since CO2 is found to be the only viable gas for microbial cell disruption among these four gases, we use a combination of Box–Behnken design and response surface methodology (RSM) to find the optimal cell disruption by tuning different parameters such as pressure (P), temperature (T), exposure time (t), and agitation (a). From RSM, we find 6 log reduction of viable cells at optimized conditions, which corresponds to more than 99% cell death at P = 4000 kPa, T = 296.5 K, t = 360 min, and a = 325 rpm. Furthermore, from the scanning electron microscope (SEM), we find a complete morphological change in the cell structure when treated with pressurized CO2 compared to the untreated cells. Finally, we find that up to 85% of total lipid can be recovered using optimized pressurized CO2 from wet biomass compared to the untreated wet cells where up to 73% lipid can be recovered.

Keywords

Cell disruption Biofuels Pressurized gas Design of experiment Optimization 

Notes

Acknowledgements

The author is thankful to the Dave C. Swalm School of Chemical Engineering and Bagley College of Engineering, Mississippi State University for the financial support to complete the research. The author is also grateful to Mrs. Amanda Lawrence for her help in sample preparation and running scanning electron microscope. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. 1.
    Liu B, Zhao Z (Kent) (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol 82:775–780.  https://doi.org/10.1002/jctb.1744 CrossRefGoogle Scholar
  2. 2.
    Vicente G, Bautista LF, Rodriguez R et al (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48:22–27.  https://doi.org/10.1016/J.BEJ.2009.07.014 CrossRefGoogle Scholar
  3. 3.
    Zhang J, Fang X, Zhu X-L et al (2011) Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Biomass Bioenerg 35:1906–1911.  https://doi.org/10.1016/J.BIOMBIOE.2011.01.024 CrossRefGoogle Scholar
  4. 4.
    Zhu LY, Zong MH, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol 99:7881–7885.  https://doi.org/10.1016/j.biortech.2008.02.033 CrossRefGoogle Scholar
  5. 5.
    Xu J, Zhao X, Wang W et al (2012) Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochem Eng J 65:30–36.  https://doi.org/10.1016/J.BEJ.2012.04.003 CrossRefGoogle Scholar
  6. 6.
    Meng X, Yang J, Xu X et al (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5.  https://doi.org/10.1016/j.renene.2008.04.014 CrossRefGoogle Scholar
  7. 7.
    Zhao X, Peng F, Du W et al (2012) Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess Biosyst Eng 35:993–1004.  https://doi.org/10.1007/s00449-012-0684-6 CrossRefGoogle Scholar
  8. 8.
    Karatay SE, Dönmez G (2010) Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Bioresour Technol 101:7988–7990.  https://doi.org/10.1016/j.biortech.2010.05.054 CrossRefGoogle Scholar
  9. 9.
    Galafassi S, Cucchetti D, Pizza F et al (2012) Lipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminis. Bioresour Technol 111:398–403.  https://doi.org/10.1016/J.BIORTECH.2012.02.004 CrossRefGoogle Scholar
  10. 10.
    Lardon L, Hélias A, Sialve B et al (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481.  https://doi.org/10.1021/es900705j CrossRefGoogle Scholar
  11. 11.
    Show KY, Lee DJ, Tay JH et al (2015) Microalgal drying and cell disruption—recent advances. Bioresour Technol 184:258–266.  https://doi.org/10.1016/j.biortech.2014.10.139 CrossRefGoogle Scholar
  12. 12.
    Howlader MS, Rai N, Todd French W (2018) Improving the lipid recovery from wet oleaginous microorganisms using different pretreatment techniques. Bioresour Technol.  https://doi.org/10.1016/J.BIORTECH.2018.07.092 Google Scholar
  13. 13.
    Lewis T, Nichols P, McMeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J Microbiol Methods 43:107–116.  https://doi.org/10.1016/S0167-7012(00)00217-7 CrossRefGoogle Scholar
  14. 14.
    Prabakaran P, Ravindran AD (2011) A comparative study on effective cell disruption methods for lipid extraction from microalgae. Lett Appl Microbiol 53:150–154.  https://doi.org/10.1111/j.1472-765X.2011.03082.x CrossRefGoogle Scholar
  15. 15.
    Zheng H, Yin J, Gao Z et al (2011) Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl Biochem Biotechnol 164:1215–1224.  https://doi.org/10.1007/s12010-011-9207-1 CrossRefGoogle Scholar
  16. 16.
    Sheng J, Vannela R, Rittmann BE (2012) Disruption of Synechocystis PCC 6803 for lipid extraction. Water Sci Technol 65:567.  https://doi.org/10.2166/wst.2012.879 CrossRefGoogle Scholar
  17. 17.
    Harmsen HJ, Gibson GR, Elfferich P et al (2000) Comparison of viable cell counts and fluorescence in situ hybridization using specific rRNA-based probes for the quantification of human fecal bacteria. FEMS Microbiol Lett 183:125–129CrossRefGoogle Scholar
  18. 18.
    Hobbie JE, Daley RJ, Jasper S (1977) Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl Environ Microbiol 33:1225–1228Google Scholar
  19. 19.
    Huang Y, Qin S, Zhang D et al (2016) Evaluation of cell disruption of Chlorella vulgaris by pressure-assisted ozonation and ultrasonication. Energies 9:173.  https://doi.org/10.3390/en9030173 CrossRefGoogle Scholar
  20. 20.
    Safi C, Ursu AV, Laroche C et al (2014) Aqueous extraction of proteins from microalgae: effect of different cell disruption methods. Algal Res 3:61–65.  https://doi.org/10.1016/J.ALGAL.2013.12.004 CrossRefGoogle Scholar
  21. 21.
    Halim R, Harun R, Danquah MK, Webley PA (2012) Microalgal cell disruption for biofuel development. Appl Energy 91:116–121.  https://doi.org/10.1016/j.apenergy.2011.08.048 CrossRefGoogle Scholar
  22. 22.
    McMillan JR, Watson IA, Ali M, Jaafar W (2013) Evaluation and comparison of algal cell disruption methods: microwave, waterbath, blender, ultrasonic and laser treatment. Appl Energy 103:128–134.  https://doi.org/10.1016/J.APENERGY.2012.09.020 CrossRefGoogle Scholar
  23. 23.
    Gerde JA, Montalbo-Lomboy M, Yao L et al (2012) Evaluation of microalgae cell disruption by ultrasonic treatment. Bioresour Technol 125:175–181.  https://doi.org/10.1016/J.BIORTECH.2012.08.110 CrossRefGoogle Scholar
  24. 24.
    Martinez-Guerra E, Howlader MS, Shields-Menard S et al (2018) Optimization of wet microalgal FAME production from Nannochloropsis sp. under the synergistic microwave and ultrasound effect. Int J Energy Res.  https://doi.org/10.1002/er.3989 Google Scholar
  25. 25.
    Ghasemi Naghdi F, González González LM, Chan W, Schenk PM (2016) Progress on lipid extraction from wet algal biomass for biodiesel production. Microb Biotechnol 9:718–726.  https://doi.org/10.1111/1751-7915.12360 CrossRefGoogle Scholar
  26. 26.
    Nakamura K, Enomoto A, Fukushima H et al (1994) Disruption of microbial cells by the flash discharge of high-pressure carbon dioxide. Biosci Biotechnol Biochem 58:1297–1301.  https://doi.org/10.1271/bbb.58.1297 CrossRefGoogle Scholar
  27. 27.
    Enomoto A, Nakamura K, Nagai K et al (1997) Inactivation of food microorganisms by high-pressure carbon dioxide treatment with or without explosive decompression. Biosci Biotechnol Biochem 61:1133–1137.  https://doi.org/10.1271/bbb.61.1133 CrossRefGoogle Scholar
  28. 28.
    Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S et al (2007) High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future. Int J Food Microbiol 117:1–28.  https://doi.org/10.1016/j.ijfoodmicro.2007.02.018 CrossRefGoogle Scholar
  29. 29.
    Ho-mu L, Zhiying Y, Li FC (1993) Inactivation of Leuconostoc dextranicum with carbon dioxide under pressure. Chem Eng J 52:B29–B34.  https://doi.org/10.1016/0300-9467(93)80047-R CrossRefGoogle Scholar
  30. 30.
    Hong S-I, Pyun Y-R (1999) Inactivation kinetics of Lactobacillus plantarum by high pressure carbon dioxide. J Food Sci 64:728–733.  https://doi.org/10.1111/j.1365-2621.1999.tb15120.x CrossRefGoogle Scholar
  31. 31.
    Howlader MS, French WT, Shields-Menard SA et al (2017) Microbial cell disruption for improving lipid recovery using pressurized CO 2: role of CO 2 solubility in cell suspension, sugar broth, and spent media. Biotechnol Prog 33:737–748.  https://doi.org/10.1002/btpr.2471 CrossRefGoogle Scholar
  32. 32.
    Howlader MS, French WT, Toghiani H et al (2017) Measurement and correlation of solubility of carbon dioxide in triglycerides. J Chem Thermodyn 104:252–260.  https://doi.org/10.1016/j.jct.2016.09.035 CrossRefGoogle Scholar
  33. 33.
    Howlader MS, Venkatesan S, Goel H et al (2018) Solubility of CO2 in triglycerides using Monte Carlo simulations. Fluid Phase Equilib.  https://doi.org/10.1016/J.FLUID.2018.01.003 Google Scholar
  34. 34.
    Revellame ED, Hernandez R, French W et al (2012) Lipid storage compounds in raw activated sludge microorganisms for biofuels and oleochemicals production. RSC Adv 2:2015–2031.  https://doi.org/10.1039/c2ra01078j CrossRefGoogle Scholar
  35. 35.
    Kumar V, Bhalla A, Rathore AS (2014) Design of experiments applications in bioprocessing: concepts and approach. Biotechnol Prog 30:86–99.  https://doi.org/10.1002/btpr.1821 CrossRefGoogle Scholar
  36. 36.
    Box GEP, Wilson KB (1992) On the experimental attainment of optimum conditions. Springer, New York, pp 270–310Google Scholar
  37. 37.
    Gunst RF (1996) Response surface methodology: process and product optimization using designed experiments. Taylor and Francis Group, LondonGoogle Scholar
  38. 38.
    Ferreira SLC, Bruns RE, da Silva EGP et al (2007) Statistical designs and response surface techniques for the optimization of chromatographic systems. J Chromatogr A 1158:2–14.  https://doi.org/10.1016/J.CHROMA.2007.03.051 CrossRefGoogle Scholar
  39. 39.
    Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:455.  https://doi.org/10.2307/1266454 CrossRefGoogle Scholar
  40. 40.
    Box GEP, Draper NR (1959) A basis for the selection of a response surface design. J Am Stat Assoc 54:622–654CrossRefGoogle Scholar
  41. 41.
    Box GEP (1954) The exploration and exploitation of response surfaces: some general considerations and examples. Biometrics 10:16.  https://doi.org/10.2307/3001663 CrossRefGoogle Scholar
  42. 42.
    Bas D, Boyaci IH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78:836–845.  https://doi.org/10.1016/J.JFOODENG.2005.11.024 CrossRefGoogle Scholar
  43. 43.
    Rathore AS, Sharma C, Persad A (2012) Use of computational fluid dynamics as a tool for establishing process design space for mixing in a bioreactor. Biotechnol Prog 28:382–391.  https://doi.org/10.1002/btpr.745 CrossRefGoogle Scholar
  44. 44.
    Bade PD, Kotu SP, Rathore AS (2012) Optimization of a refolding step for a therapeutic fusion protein in the quality by design (QbD) paradigm. J Sep Sci 35:3160–3169.  https://doi.org/10.1002/jssc.201200476 CrossRefGoogle Scholar
  45. 45.
    Debs-Louka E, Louka N, Abraham G et al (1999) Effect of compressed carbon dioxide on microbial cell viability. Appl Environ Microbiol 65:626–631Google Scholar
  46. 46.
    Spilimbergo S, Bertucco A (2003) Non-thermal bacterial inactivation with dense CO2. Biotechnol Bioeng 84:627–638.  https://doi.org/10.1002/bit.10783 CrossRefGoogle Scholar
  47. 47.
    Braunwald T, Schwemmlein L, Graeff-Hönninger S et al (2013) Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl Microbiol Biotechnol 97:6581–6588.  https://doi.org/10.1007/s00253-013-5005-8 CrossRefGoogle Scholar
  48. 48.
    Tripathi P, Srivastava VC, Kumar A (2009) Optimization of an azo dye batch adsorption parameters using Box–Behnken design. Desalination 249:1273–1279.  https://doi.org/10.1016/J.DESAL.2009.03.010 CrossRefGoogle Scholar
  49. 49.
    Prakash Maran J, Manikandan S, Thirugnanasambandham K et al (2013) Box–Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide. Carbohydr Polym 92:604–611.  https://doi.org/10.1016/J.CARBPOL.2012.09.020 CrossRefGoogle Scholar
  50. 50.
    Melo Silva J, Rigo AA, Dalmolin IA et al (2013) Effect of pressure, depressurization rate and pressure cycling on the inactivation of Escherichia coli by supercritical carbon dioxide. Food Control 29:76–81.  https://doi.org/10.1016/j.foodcont.2012.05.068 CrossRefGoogle Scholar
  51. 51.
    Cheng J, Sun J, Huang Y et al (2013) Dynamic microstructures and fractal characterization of cell wall disruption for microwave irradiation-assisted lipid extraction from wet microalgae. Bioresour Technol 150:67–72.  https://doi.org/10.1016/j.biortech.2013.09.126 CrossRefGoogle Scholar
  52. 52.
    Tommasi E, Cravotto G, Galletti P et al (2017) Enhanced and selective lipid extraction from the microalga P. tricornutum by dimethyl carbonate and supercritical CO2 using deep eutectic solvents and microwaves as pretreatment. ACS Sustain Chem Eng 5:8316–8322.  https://doi.org/10.1021/acssuschemeng.7b02074 CrossRefGoogle Scholar
  53. 53.
    Cheng J, Sun J, Huang Y et al (2014) Fractal microstructure characterization of wet microalgal cells disrupted with ultrasonic cavitation for lipid extraction. Bioresour Technol 170:138–143.  https://doi.org/10.1016/j.biortech.2014.07.090 CrossRefGoogle Scholar
  54. 54.
    Keris-Sen UD, Sen U, Soydemir G, Gurol MD (2014) An investigation of ultrasound effect on microalgal cell integrity and lipid extraction efficiency. Bioresour Technol 152:407–413.  https://doi.org/10.1016/j.biortech.2013.11.018 CrossRefGoogle Scholar
  55. 55.
    Meullemiestre A, Breil C, Abert-Vian M, Chemat F (2016) Microwave, ultrasound, thermal treatments, and bead milling as intensification techniques for extraction of lipids from oleaginous Yarrowia lipolytica yeast for a biojetfuel application. Bioresour Technol 211:190–199.  https://doi.org/10.1016/j.biortech.2016.03.040 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Md Shamim Howlader
    • 1
  • Janice DuBien
    • 2
  • El Barbary Hassan
    • 3
  • Neeraj Rai
    • 1
    • 4
  • William Todd French
    • 1
    Email author
  1. 1.Dave C. Swalm School of Chemical EngineeringMississippi State UniversityMississippi StateUSA
  2. 2.Department of Mathematics and StatisticsMississippi State UniversityMississippi StateUSA
  3. 3.Department of Sustainable BioproductsMississippi State UniversityMississippi StateUSA
  4. 4.Center for Advanced Vehicular SystemsMississippi State UniversityMississippi StateUSA

Personalised recommendations