Advertisement

Anodic microbial community analysis of microbial fuel cells based on enriched inoculum from freshwater sediment

  • Caterina Armato
  • Daniyal Ahmed
  • Valeria Agostino
  • Deborah Traversi
  • Raffaella Degan
  • Tonia Tommasi
  • Valentina Margaria
  • Adriano Sacco
  • Giorgio Gilli
  • Marzia Quaglio
  • Guido Saracco
  • Tiziana SchiliròEmail author
Research Paper
  • 40 Downloads

Abstract

The characterization of anodic microbial communities is of great importance in the study of microbial fuel cells (MFCs). These kinds of devices mainly require a high abundance of anode respiring bacteria (ARB) in the anode chamber for optimal performance. This study evaluated the effect of different enrichments of environmental freshwater sediment samples used as inocula on microbial community structures in MFCs. Two enrichment media were compared: ferric citrate (FeC) enrichment, with the purpose of increasing the ARB percentage, and general enrichment (Gen). The microbial community dynamics were evaluated by polymerase chain reaction followed by denaturing gradient gel electrophoresis (PCR-DGGE) and real time polymerase chain reaction (qPCR). The enrichment effect was visible on the microbial community composition both during precultures and in anode MFCs. Both enrichment approaches affected microbial communities. Shannon diversity as well as β-Proteobacteria and γ-Proteobacteria percentages decreased during the enrichment steps, especially for FeC (p < 0.01). Our data suggest that FeC enrichment excessively reduced the diversity of the anode community, rather than promoting the proliferation of ARB, causing a condition that did not produce advantages in terms of system performance.

Graphical abstract

Keywords

Freshwater sediment Microbial communities DGGE Real-time qPCR MFC 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Miceli JF, Parameswaran P, Kang DW et al (2012) Enrichment and analysis of anode-respiring bacteria from diverse anaerobic inocula. Environ Sci Technol 46:10349–10355.  https://doi.org/10.1021/es301902h Google Scholar
  2. 2.
    Singh HM, Pathak AK, Chopra K et al (2018) Microbial fuel cells: a sustainable solution for bioelectricity generation and wastewater treatment. Biofuels 7269:1–21.  https://doi.org/10.1080/17597269.2017.1413860 Google Scholar
  3. 3.
    Saratale GD, Saratale RG, Shahid MK et al (2017) A comprehensive overview on electro-active biofilms, role of exo-electrogens and their microbial niches in microbial fuel cells (MFCs). Chemosphere 178:534–547.  https://doi.org/10.1016/j.chemosphere.2017.03.066 CrossRefGoogle Scholar
  4. 4.
    Aguirre-Sierra A, Bacchetti-De Gregoris T, Berná A et al (2016) Microbial electrochemical systems outperform fixed-bed biofilters in cleaning up urban wastewater. Environ Sci Water Res Technol 2:984–993.  https://doi.org/10.1039/C6EW00172F CrossRefGoogle Scholar
  5. 5.
    Pierra M, Carmona-Martínez AA, Trably E et al (2015) Microbial characterization of anode-respiring bacteria within biofilms developed from cultures previously enriched in dissimilatory metal-reducing bacteria. Biores Technol 195:283–287.  https://doi.org/10.1016/j.biortech.2015.07.010 CrossRefGoogle Scholar
  6. 6.
    Doyle LE, Marsili E (2015) Methods for enrichment of novel electrochemically-active microorganisms. Biores Technol 195:273–282.  https://doi.org/10.1016/j.biortech.2015.07.025 CrossRefGoogle Scholar
  7. 7.
    Koch C, Harnisch F (2016) Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 3:1282–1295.  https://doi.org/10.1002/celc.201600079 CrossRefGoogle Scholar
  8. 8.
    Zhang YC, Jiang ZH, Liu Y (2015) Application of electrochemically active bacteria as anodic biocatalyst in microbial fuel cells. Chin J Anal Chem 43:155–163.  https://doi.org/10.1016/S1872-2040(15)60800-3 CrossRefGoogle Scholar
  9. 9.
    Kubota K, Watanabe T, Yamaguchi T, Syutsubo K (2016) Characterization of wastewater treatment by two microbial fuel cells in continuous flow operation. Environ Technol 37:114–120.  https://doi.org/10.1080/09593330.2015.1064169 CrossRefGoogle Scholar
  10. 10.
    Haavisto JM, Lakaniemi AM, Puhakka JA (2018) Storing of exoelectrogenic anolyte for efficient microbial fuel cell recovery. Environ Technol.  https://doi.org/10.1080/09593330.2017.1423395 Google Scholar
  11. 11.
    Zhang Y, Zhao Y-G, Guo L, Gao M (2018) Two-stage pretreatment of excess sludge for electricity generation in microbial fuel cell. Environ Technol 1–10.  https://doi.org/10.1080/09593330.2017.1422548
  12. 12.
    Sleutels THJA, Darus L, Hamelers HVM, Buisman CJN (2011) Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems. Biores Technol 102:11172–11176.  https://doi.org/10.1016/j.biortech.2011.09.078 CrossRefGoogle Scholar
  13. 13.
    Liu Y, Harnisch F, Fricke K et al (2008) Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosens Bioelectron 24:1006–1011.  https://doi.org/10.1016/j.bios.2008.08.001 CrossRefGoogle Scholar
  14. 14.
    Kim JR, Min B, Logan BE (2005) Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl Microbiol Biotechnol 68:23–30.  https://doi.org/10.1007/s00253-004-1845-6 CrossRefGoogle Scholar
  15. 15.
    Sathish-Kumar K, Solorza-Feria O, Tapia-Ramírez J et al (2013) Electrochemical and chemical enrichment methods of a sodic–saline inoculum for microbial fuel cells. Int J Hydrog Energy 38:12600–12609.  https://doi.org/10.1016/J.IJHYDENE.2012.11.147 CrossRefGoogle Scholar
  16. 16.
    Wang A, Sun D, Ren N et al (2010) A rapid selection strategy for an anodophilic consortium for microbial fuel cells. Biores Technol 101:5733–5735.  https://doi.org/10.1016/j.biortech.2010.02.056 CrossRefGoogle Scholar
  17. 17.
    Torres CI, Krajmalnik-Brown R, Parameswaran P et al (2009) Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ Sci Technol 43:9519–9524.  https://doi.org/10.1021/es902165y CrossRefGoogle Scholar
  18. 18.
    Stratford JP, Beecroft NJ, Slade RCT et al (2014) Anodic microbial community diversity as a predictor of the power output of microbial fuel cells. Biores Technol 156:84–91.  https://doi.org/10.1016/j.biortech.2014.01.041 CrossRefGoogle Scholar
  19. 19.
    Yamamoto S, Suzuki K, Araki Y et al (2014) Dynamics of different bacterial communities are capable of generating sustainable electricity from microbial fuel cells with organic waste. Microbes Environ 29:145–153.  https://doi.org/10.1264/jsme2.ME13140 CrossRefGoogle Scholar
  20. 20.
    Agostino V, Ahmed D, Sacco A et al (2017) Electrochemical analysis of microbial fuel cells based on enriched biofilm communities from freshwater sediment. Electrochim Acta 237:133–143.  https://doi.org/10.1016/j.electacta.2017.03.186 CrossRefGoogle Scholar
  21. 21.
    Zhi W, Ge Z, He Z, Zhang H (2014) Methods for understanding microbial community structures and functions in microbial fuel cells: a review. Biores Technol 171:461–468.  https://doi.org/10.1016/j.biortech.2014.08.096 CrossRefGoogle Scholar
  22. 22.
    Schilirò T, Tommasi T, Armato C et al (2016) The study of electrochemically active planktonic microbes in microbial fuel cells in relation to different carbon-based anode materials. Energy 106:277–284.  https://doi.org/10.1016/j.energy.2016.03.004 CrossRefGoogle Scholar
  23. 23.
    Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700Google Scholar
  24. 24.
    Webster G, Parkes RJ, Cragg BA et al (2006) Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol 58:65–85.  https://doi.org/10.1111/j.1574-6941.2006.00144.x CrossRefGoogle Scholar
  25. 25.
    O’Sullivan LA, Webster G, Fry JC et al (2008) Modified linker-PCR primers facilitate complete sequencing of DGGE DNA fragments. J Microbiol Methods 75:579–581.  https://doi.org/10.1016/j.mimet.2008.08.006 CrossRefGoogle Scholar
  26. 26.
    Murri M, Leiva I, Gomez-Zumaquero JM et al (2013) Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 11:46.  https://doi.org/10.1186/1741-7015-11-46 CrossRefGoogle Scholar
  27. 27.
    Yang YW, Chen MK, Yang BY et al (2015) Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in mouse feces. Appl Environ Microbiol 81:6749–6756.  https://doi.org/10.1128/AEM.01906-15 CrossRefGoogle Scholar
  28. 28.
    Bacchetti De Gregoris T, Aldred N, Clare AS, Burgess JG (2011) Improvement of phylum- and class-specific primers for real-time PCR quantification of bacterial taxa. J Microbiol Methods 86:351–356.  https://doi.org/10.1016/j.mimet.2011.06.010 CrossRefGoogle Scholar
  29. 29.
    Hermann-Bank ML, Skovgaard K, Stockmarr A et al (2013) The Gut Microbiotassay: a high-throughput qPCR approach combinable with next generation sequencing to study gut microbial diversity. BMC Genom 14:788.  https://doi.org/10.1186/1471-2164-14-788 CrossRefGoogle Scholar
  30. 30.
    Cummings DE, Snoeyenbos-West OL, Newby DT et al (2003) Diversity of Geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses. Microb Ecol 46:257–269.  https://doi.org/10.1007/s00248-002-0005-8 CrossRefGoogle Scholar
  31. 31.
    de Souza JT, Mazzola M, Raaijmakers JM (2003) Conservation of the response regulator gene gacA in Pseudomonas species. Environ Microbiol 5:1328–1340.  https://doi.org/10.1046/j.1462-2920.2003.00438.x CrossRefGoogle Scholar
  32. 32.
    Dridi B, Henry M, El Khéchine A et al (2009) High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS One.  https://doi.org/10.1371/journal.pone.0007063 Google Scholar
  33. 33.
    Carriço JA, Pinto FR, Simas C et al (2005) Assessment of band-based similarity coefficients for automatic type and subtype classification of microbial isolates analyzed by pulsed-field gel electrophoresis. J Clin Microbiol 43:5483–5490.  https://doi.org/10.1128/JCM.43.11.5483-5490.2005 CrossRefGoogle Scholar
  34. 34.
    Cristiani P, Franzetti A, Gandolfi I et al (2013) Bacterial DGGE fingerprints of biofilms on electrodes of membraneless microbial fuel cells. Int Biodeterior Biodegrad 84:211–219.  https://doi.org/10.1016/j.ibiod.2012.05.040 CrossRefGoogle Scholar
  35. 35.
    Beecroft NJ, Zhao F, Varcoe JR et al (2012) Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose. Appl Microbiol Biotechnol 93:423–437.  https://doi.org/10.1007/s00253-011-3590-y CrossRefGoogle Scholar
  36. 36.
    Kim JR, Beecroft NJ, Varcoe JR et al (2011) Spatiotemporal development of the bacterial community in a tubular longitudinal microbial fuel cell. Appl Microbiol Biotechnol 90:1179–1191.  https://doi.org/10.1007/s00253-011-3181-y CrossRefGoogle Scholar
  37. 37.
    Sun G, Thygesen A, Meyer AS (2015) Acetate is a superior substrate for microbial fuel cell initiation preceding bioethanol effluent utilization. Appl Microbiol Biotechnol 99:4905–4915.  https://doi.org/10.1007/s00253-015-6513-5 CrossRefGoogle Scholar
  38. 38.
    Sotres A, Díaz-Marcos J, Guivernau M et al (2015) Microbial community dynamics in two-chambered microbial fuel cells: effect of different ion exchange membranes. J Chem Technol Biotechnol 90:1497–1506.  https://doi.org/10.1002/jctb.4465 CrossRefGoogle Scholar
  39. 39.
    Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4160.  https://doi.org/10.1128/JB.00345-12 CrossRefGoogle Scholar
  40. 40.
    Chae KJ, Choi MJ, Lee JW et al (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Biores Technol 100:3518–3525.  https://doi.org/10.1016/j.biortech.2009.02.065 CrossRefGoogle Scholar
  41. 41.
    Liu Q, Yang Y, Mei X et al (2018) Response of the microbial community structure of biofilms to ferric iron in microbial fuel cells. Sci Total Environ 631–632:695–701.  https://doi.org/10.1016/j.scitotenv.2018.03.008 CrossRefGoogle Scholar
  42. 42.
    Sotres A, Cerrillo M, Viñas M, Bonmatì A (2015) Nitrogen recovery from pig slurry in a two-chambered bioelectrochemical system. Biores Technol 194:373–382.  https://doi.org/10.1016/j.biortech.2015.07.036 CrossRefGoogle Scholar
  43. 43.
    Sotres A, Tey L, Bonmatí A, Viñas M (2016) Microbial community dynamics in continuous microbial fuel cells fed with synthetic wastewater and pig slurry. Bioelectrochemistry 111:70–82.  https://doi.org/10.1016/j.bioelechem.2016.04.007 CrossRefGoogle Scholar
  44. 44.
    Bonmatí A, Sotres A, Mu Y et al (2013) Oxalate degradation in a bioelectrochemical system: Reactor performance and microbial community characterization. Biores Technol 143:147–153.  https://doi.org/10.1016/j.biortech.2013.05.116 CrossRefGoogle Scholar
  45. 45.
    Kannaiah Goud R, Venkata Mohan S (2013) Prolonged applied potential to anode facilitate selective enrichment of bio-electrochemically active Proteobacteria for mediating electron transfer: microbial dynamics and bio-catalytic analysis. Biores Technol 137:160–170.  https://doi.org/10.1016/j.biortech.2013.03.059 CrossRefGoogle Scholar
  46. 46.
    Hu A, Yang X, Chen N et al (2014) Response of bacterial communities to environmental changes in a mesoscale subtropical watershed, Southeast China. Sci Total Environ 472:746–756.  https://doi.org/10.1016/j.scitotenv.2013.11.097 CrossRefGoogle Scholar
  47. 47.
    Rago L, Baeza JA, Guisasola A (2016) Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions. Bioelectrochemistry 109:57–62.  https://doi.org/10.1016/j.bioelechem.2016.01.003 CrossRefGoogle Scholar
  48. 48.
    Margaria V, Tommasi T, Pentassuglia S et al (2017) Effects of pH variations on anodic marine consortia in a dual chamber microbial fuel cell. Int J Hydrog Energy 42:1820–1829.  https://doi.org/10.1016/j.ijhydene.2016.07.250 CrossRefGoogle Scholar
  49. 49.
    Wang Z, Lee T, Lim B et al (2014) Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate. Biotechnol Biofuels 7:9.  https://doi.org/10.1186/1754-6834-7-9 CrossRefGoogle Scholar
  50. 50.
    Rago L, Ruiz Y, Baeza JA et al (2015) Microbial community analysis in a long-term membrane-less microbial electrolysis cell with hydrogen and methane production. Bioelectrochemistry 106:359–368.  https://doi.org/10.1016/j.bioelechem.2015.06.003 CrossRefGoogle Scholar
  51. 51.
    Lee Y-Y, Kim TG, Cho K (2015) Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells. J Biotechnol 211:130–137.  https://doi.org/10.1016/j.jbiotec.2015.07.018 CrossRefGoogle Scholar
  52. 52.
    Spiegelman D, Whissell G, Greer CW (2005) A survey of the methods for the characterization of microbial consortia and communities. Can J Microbiol 51:355–386.  https://doi.org/10.1139/w05-003 CrossRefGoogle Scholar
  53. 53.
    Rittmann BE, Krajmalnik-Brown R, Halden RU (2008) Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nat Rev Microbiol 6:604–612.  https://doi.org/10.1038/nrmicro1939 CrossRefGoogle Scholar
  54. 54.
    Harnisch F, Rabaey K (2012) The diversity of techniques to study electrochemically active biofilms highlights the need for standardization. ChemSusChem 5:1027–1038.  https://doi.org/10.1002/cssc.201100817 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Caterina Armato
    • 1
    • 2
  • Daniyal Ahmed
    • 2
    • 3
  • Valeria Agostino
    • 2
    • 3
  • Deborah Traversi
    • 1
  • Raffaella Degan
    • 1
  • Tonia Tommasi
    • 3
  • Valentina Margaria
    • 2
  • Adriano Sacco
    • 2
  • Giorgio Gilli
    • 1
  • Marzia Quaglio
    • 2
  • Guido Saracco
    • 2
  • Tiziana Schilirò
    • 1
    Email author
  1. 1.Department of Public Health and PediatricsUniversity of TorinoTurinItaly
  2. 2.Centre for Sustainable Future Technologies (CSFT@PoliTo)Istituto Italiano di TecnologiaTurinItaly
  3. 3.Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly

Personalised recommendations