Advertisement

Evaluation of multiple fused partners on enhancing soluble level of prenyltransferase NovQ in Escherichia coli

  • Wenfeng Ni
  • Hui Liu
  • Peng Wang
  • Li Wang
  • Xiaowen Sun
  • Han Wang
  • Genhai Zhao
  • Zhiming Zheng
Research Paper
  • 158 Downloads

Abstract

To obtain the soluble production of recombinant NovQ, it has been constructed into the pET28a system. Unfortunately, NovQ was mostly accumulated as inclusion bodies and existed in insoluble fractions of E. coli cell lysate. Four partners, namely His6, TrxA, GST and MBP, were investigated in fusion expression and co-expression to achieve soluble expression in E. coli strains BL21 (DE3) and Rosetta™ (DE3). MBP fusion expression revealed a forceful function in enhancing solubility compared with others, in which the soluble protein was approximately 70% of the total cellular proteins in E. coli. Improvement of rare tRNA abundance promoted the yield of total recombinant protein and the expression level of soluble protein. Besides, one-step purification method was applied and the purity of recombinant protein obtained using Ni–NTA resin was over 90%, where soluble recombinant MBP-NovQ was cleaved using TEV protease in vitro. This method could be an ideal method for soluble expression of ABBA prenyltransferases in E. coli.

Keywords

Prenyltransferase NovQ Soluble expression Maltose binding protein TEV protease 

Notes

Acknowledgements

This work was supported by the Key 863 Fund of China (2014AA021704), Key research and development plan of Anhui Province (1804b06020342), Natural Science Foundation of Anhui Province (1308085MA07 and 1608085QC46) and Major Projects of Science and Technology in Anhui Province (17030801036) “Development and Demonstration of Vitamin K2 Functional Food”.

Supplementary material

449_2018_2050_MOESM1_ESM.doc (615 kb)
Supplementary material 1 (DOC 615 KB)

References

  1. 1.
    Botta B, Delle Monache G, Menendez P, Boffi A (2005) Novel prenyltransferase enzymes as a tool for flavonoid prenylation. Trends Pharmacol Sci 26(12):606–608.  https://doi.org/10.1016/j.tips.2005.09.012 CrossRefPubMedGoogle Scholar
  2. 2.
    Li Z, Zhao G, Liu H, Guo Y, Wu H, Sun X, Wu X, Zheng Z (2017) Biotransformation of menadione to its prenylated derivative MK-3 using recombinant Pichia pastoris. J Ind Microbiol Biotechnol 44(7):973–985.  https://doi.org/10.1007/s10295-017-1931-2 CrossRefPubMedGoogle Scholar
  3. 3.
    Haagen Y, Unsold I, Westrich L, Gust B, Richard SB, Noel JP, Heide L (2007) A soluble, magnesium-independent prenyltransferase catalyzes reverse and regular C-prenylations and O-prenylations of aromatic substrates. FEBS Lett 581(16):2889–2893.  https://doi.org/10.1016/j.febslet.2007.05.031 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kumano T, Richard SB, Noel JP, Nishiyama M, Kuzuyama T (2008) Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities. Bioorg Med Chem 16(17):8117–8126.  https://doi.org/10.1016/j.bmc.2008.07.052 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wei H, Zhao G, Liu H, Wang H, Ni W, Wang P, Zheng Z (2018) A simple and efficient method for the extraction and separation of menaquinone homologs from wet biomass of Flavobacterium. Bioprocess Biosyst Eng 41(1):107–113.  https://doi.org/10.1007/s00449-017-1851-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Kuzuyama T (2017) Biosynthetic studies on terpenoids produced by Streptomyces. J Antibiot (Tokyo) 70(7):811–818.  https://doi.org/10.1038/ja.2017.12 CrossRefGoogle Scholar
  7. 7.
    Zhao W, Fan A, Tarcz S, Zhou K, Yin WB, Liu XQ, Li SM (2017) Mutation on Gly115 and Tyr205 of the cyclic dipeptide C2-prenyltransferase FtmPT1 increases its catalytic activity toward hydroxynaphthalenes. Appl Microbiol Biotechnol 101(5):1989–1998.  https://doi.org/10.1007/s00253-016-7966-x CrossRefPubMedGoogle Scholar
  8. 8.
    Zeyhle P, Bauer JS, Kalinowski J, Shin-ya K, Gross H, Heide L (2014) Genome-based discovery of a novel membrane-bound 1,6-dihydroxyphenazine prenyltransferase from a marine actinomycete. PLoS One 9(6):e99122.  https://doi.org/10.1371/journal.pone.0099122 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Saleh O, Haagen Y, Seeger K, Heide L (2009) Prenyl transfer to aromatic substrates in the biosynthesis of aminocoumarins, meroterpenoids and phenazines: the ABBA prenyltransferase family. Phytochemistry 70(15–16):1728–1738.  https://doi.org/10.1016/j.phytochem.2009.05.009 CrossRefPubMedGoogle Scholar
  10. 10.
    Pojer F, Wemakor E, Kammerer B, Chen H, Walsh CT, Li SM, Heide L (2003) CloQ, a prenyltransferase involved in clorobiocin biosynthesis. Proc Natl Acad Sci USA 100(5):2316–2321.  https://doi.org/10.1073/pnas.0337708100 CrossRefPubMedGoogle Scholar
  11. 11.
    Ozaki T, Mishima S, Nishiyama M, Kuzuyama T (2009) NovQ is a prenyltransferase capable of catalyzing the addition of a dimethylallyl group to both phenylpropanoids and flavonoids. J Antibiot (Tokyo) 62(7):385–392.  https://doi.org/10.1038/ja.2009.48 CrossRefGoogle Scholar
  12. 12.
    Kuzuyama T, Noel JP, Richard SB (2005) Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature 435(7044):983–987.  https://doi.org/10.1038/nature03668 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang J, Lv X, Xu R, Tao X, Dong Y, Sun A, Wei D (2015) Soluble expression, rapid purification, and characterization of human interleukin-24 (IL-24) using a MBP-SUMO dual fusion system in Escherichia coli. Appl Microbiol Biotechnol 99(16):6705–6713.  https://doi.org/10.1007/s00253-015-6441-4 CrossRefPubMedGoogle Scholar
  14. 14.
    Su B, Wu M, Zhang Z, Lin J, Yang L (2015) Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli. Metab Eng 31:112–122.  https://doi.org/10.1016/j.ymben.2015.07.003 CrossRefPubMedGoogle Scholar
  15. 15.
    Kopp J, Slouka C, Ulonska S, Kager J, Fricke J, Spadiut O, Herwig C (2017) Impact of glycerol as carbon source onto specific sugar and inducer uptake rates and inclusion body productivity in E. coli BL21(DE3). Bioengineering (Basel).  https://doi.org/10.3390/bioengineering5010001 CrossRefGoogle Scholar
  16. 16.
    Tong Y, Feng S, Xin Y, Yang H, Zhang L, Wang W, Chen W (2016) Enhancement of soluble expression of codon-optimized Thermomicrobium roseum sarcosine oxidase in Escherichia coli via chaperone co-expression. J Biotechnol 218:75–84.  https://doi.org/10.1016/j.jbiotec.2015.11.018 CrossRefPubMedGoogle Scholar
  17. 17.
    Garcia-Fraga B, da Silva AF, Lopez-Seijas J, Sieiro C (2015) Optimized expression conditions for enhancing production of two recombinant chitinolytic enzymes from different prokaryote domains. Bioprocess Biosyst Eng 38(12):2477–2486.  https://doi.org/10.1007/s00449-015-1485-5 CrossRefPubMedGoogle Scholar
  18. 18.
    Demonte D, Dundas CM, Park S (2014) Expression and purification of soluble monomeric streptavidin in Escherichia coli. Appl Microbiol Biotechnol 98(14):6285–6295.  https://doi.org/10.1007/s00253-014-5682-y CrossRefPubMedGoogle Scholar
  19. 19.
    Zhou Y, Ma X, Hou Z, Xue X, Meng J, Li M, Jia M, Luo X (2012) High cell density cultivation of recombinant Escherichia coli for prodrug of recombinant human GLPs production. Protein Expr Purif 85(1):38–43.  https://doi.org/10.1016/j.pep.2012.06.016 CrossRefPubMedGoogle Scholar
  20. 20.
    Winter J, Gleiter S, Klappa P, Lilie H (2011) Protein disulfide isomerase isomerizes non-native disulfide bonds in human proinsulin independent of its peptide-binding activity. Protein Sci 20(3):588–596.  https://doi.org/10.1002/pro.592 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Matsuda T, Watanabe S, Kigawa T (2013) Cell-free synthesis system suitable for disulfide-containing proteins. Biochem Biophys Res Commun 431(2):296–301.  https://doi.org/10.1016/j.bbrc.2012.12.107 CrossRefPubMedGoogle Scholar
  22. 22.
    Jung HJ, Kim SK, Min WK, Lee SS, Park K, Park YC, Seo JH (2011) Polycationic amino acid tags enhance soluble expression of Candida antarctica lipase B in recombinant Escherichia coli. Bioprocess Biosyst Eng 34(7):833–839.  https://doi.org/10.1007/s00449-011-0533-z CrossRefPubMedGoogle Scholar
  23. 23.
    Mousavi SB, Fazeli A, Shojaosadati SA, Fazeli MR, Hashemi-Najafabadi S (2017) Purification and efficient refolding process for recombinant tissue-type plasminogen activator derivative (reteplase) using glycerol and Tranexamic acid. Process Biochem 53:135–144.  https://doi.org/10.1016/j.procbio.2016.11.020 CrossRefGoogle Scholar
  24. 24.
    Mollaev M, Gorokhovets N, Nikolskaya E, Faustova M, Zabolotsky A, Sokol M, Tereshenko O, Zhunina O, Shvets V, Severin E, Yabbarov N (2018) Recombinant alpha-fetoprotein receptor-binding domain co-expression with polyglutamate tags facilitates in vivo folding in E. coli. Protein Expr Purif 143:77–82.  https://doi.org/10.1016/j.pep.2017.11.001 CrossRefPubMedGoogle Scholar
  25. 25.
    Heiker JT, Kloting N, Bluher M, Beck-Sickinger AG (2010) Access to gram scale amounts of functional globular adiponectin from E. coli inclusion bodies by alkaline-shock solubilization. Biochem Biophys Res Commun 398(1):32–37.  https://doi.org/10.1016/j.bbrc.2010.06.020 CrossRefPubMedGoogle Scholar
  26. 26.
    Ohara K, Mito K, Yazaki K (2013) Homogeneous purification and characterization of LePGT1—a membrane-bound aromatic substrate prenyltransferase involved in secondary metabolism of Lithospermum erythrorhizon. FEBS J 280(11):2572–2580.  https://doi.org/10.1111/febs.12239 CrossRefPubMedGoogle Scholar
  27. 27.
    Ni H, Guo PC, Jiang WL, Fan XM, Luo XY, Li HH (2016) Expression of nattokinase in Escherichia coli and renaturation of its inclusion body. J Biotechnol 231:65–71.  https://doi.org/10.1016/j.jbiotec.2016.05.034 CrossRefPubMedGoogle Scholar
  28. 28.
    Kong B, Guo GL (2014) Soluble expression of disulfide bond containing proteins FGF15 and FGF19 in the cytoplasm of Escherichia coli. PLoS One 9(1):e85890.  https://doi.org/10.1371/journal.pone.0085890 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Saeed H, Ali H, Soudan H, Embaby A, El-Sharkawy A, Farag A, Hussein A, Ataya F (2018) Molecular cloning, structural modeling and production of recombinant Aspergillus terreusl. asparaginase in Escherichia coli. Int J Biol Macromol 106:1041–1051.  https://doi.org/10.1016/j.ijbiomac.2017.08.110 CrossRefPubMedGoogle Scholar
  30. 30.
    Han T, Ming H, Deng L, Zhu H, Liu Z, Zhang J, Song Y (2017) A novel expression vector for the improved solubility of recombinant scorpion venom in Escherichia coli. Biochem Biophys Res Commun 482(1):120–125.  https://doi.org/10.1016/j.bbrc.2016.09.047 CrossRefPubMedGoogle Scholar
  31. 31.
    Wang W, Sun J, Xiao W, Jiang L, Wang R, Fan J (2017) Change of the N-terminal codon bias combined with tRNA supplementation outperforms the selected fusion tags for production of human D-amino acid oxidase as active inclusion bodies. Biotechnol Lett 39(11):1733–1740.  https://doi.org/10.1007/s10529-017-2413-3 CrossRefPubMedGoogle Scholar
  32. 32.
    BEDOUELLE H DP (1988) Production in Escherichia coli and one-step purification of bifunctional hybrid proteins which bind maltose-Export of the Klenow polymerase into the periplasmic space. Eur J Biochem 171:541–549.  https://doi.org/10.1111/j.1432-1033.1988.tb13823.x CrossRefGoogle Scholar
  33. 33.
    Fang J, Zou L, Zhou X, Cheng B, Fan J (2014) Synonymous rare arginine codons and tRNA abundance affect protein production and quality of TEV protease variant. PLoS One 9(11):e112254.  https://doi.org/10.1371/journal.pone.0112254 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jin T, Chuenchor W, Jiang J, Cheng J, Li Y, Fang K, Huang M, Smith P, Xiao TS (2017) Design of an expression system to enhance MBP-mediated crystallization. Sci Rep 7:40991.  https://doi.org/10.1038/srep40991 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rosano GL, Ceccarelli EA (2009) Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microb Cell Fact 8:41.  https://doi.org/10.1186/1475-2859-8-41 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    James F, Kane SBP, King of Prussi (1995) Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coil. Curr Opin Biotechnol 6:494–500.  https://doi.org/10.1016/0958-1669(95)80082-4 CrossRefGoogle Scholar
  37. 37.
    Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307(1–2):249–264.  https://doi.org/10.1007/s11010-007-9603-6 CrossRefPubMedGoogle Scholar
  38. 38.
    Kumano T, Tomita T, Nishiyama M, Kuzuyama T (2010) Functional characterization of the promiscuous prenyltransferase responsible for furaquinocin biosynthesis: identification of a physiological polyketide substrate and its prenylated reaction products. J Biol Chem 285(51):39663–39671.  https://doi.org/10.1074/jbc.M110.153957 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Winkelblech J, Fan A, Li SM (2015) Prenyltransferases as key enzymes in primary and secondary metabolism. Appl Microbiol Biotechnol 99(18):7379–7397.  https://doi.org/10.1007/s00253-015-6811-y CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiPeople’s Republic of China
  2. 2.University of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations