Advertisement

Acetone, butanol, and ethanol production from the green seaweed Enteromorpha intestinalis via the separate hydrolysis and fermentation

  • Trung Hau Nguyen
  • In Yung Sunwoo
  • Chae Hun Ra
  • Gwi-Taek Jeong
  • Sung-Koo Kim
Research Paper
  • 27 Downloads

Abstract

Acetone, butanol, and ethanol (ABE) were produced following the separate hydrolysis and fermentation (SHF) method using polysaccharides from the green macroalgae Enteromorpha intestinalis as biomass. We focused on the optimization of enzymatic saccharification as pretreatments for the fermentation of E. intestinalis. Pretreatment was carried out with 10% (w/v) seaweed slurry and 270-mM H2SO4 at 121 °C for 60 min. Monosaccharides (mainly glucose) were obtained from enzymatic hydrolysis with a 16-U/mL mixture of Celluclast 1.5 L and Viscozyme L at 45 °C for 36 h. ABE fermentation with 10% (w/v) E. intestinalis hydrolysate was performed using the anaerobic bacteria Clostridium acetobutylicum with either uncontrolled pH, pH controlled at 6.0, or pH controlled initially at 6.0 and then 4.5 after 4 days, which produced ABE contents of 5.6 g/L with an ABE yield (YABE) of 0.24 g/g, 4.8 g/L with an YABE of 0.2 g/g, and 8.5 g/L with an YABE of 0.36 g/g, respectively.

Keywords

Clostridium acetobutylicum Enteromorpha intestinalis Enzymatic saccharification Fermentation Thermal acid hydrolysis 

Notes

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (2016R1D1A1A09918683).

Compliance with ethical standards

Conflict of interest

The authors indicate no potential conflicts of interest.

References

  1. 1.
    Karimi K, Tabatabaei M, Horváth IS, Kumar R (2015) Recent trends in acetone, butanol, and ethanol (ABE) production. Biofuel Res J 8:301–308CrossRefGoogle Scholar
  2. 2.
    Huang H, Songh V, Qureshi N (2015) Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution. Biotechnol Biofuels 8:147CrossRefGoogle Scholar
  3. 3.
    Ndaba B, Chiyanzu I, Marx S (2015) n-Butanol derived from biochemical and chemical routes: A review. Biotechnol Rep (Amst) 8:1–9CrossRefGoogle Scholar
  4. 4.
    Madihah MS, Ariff AB, Sahaid KM, Suraini AA, Karim MIA (2011) Direct fermentation of gelatinized sago starch to acetone-butanol-ethanol by Clostridium acetobutylicum. World J Microbiol Biotechnol 17:567–576CrossRefGoogle Scholar
  5. 5.
    Kalidas S, Gopinadhan P, Anthony P, Robert EL (2005) Food Biotechnology, 2nd edn. Taylor & Francis, Boca RatonGoogle Scholar
  6. 6.
    Ezeji TC, Qureshi N, Blaschek HP (2007) Production of acetone butanol (AB) from liquefied corn starch, a commercial substrate, using Clostridium beijerinckii coupled with product recovery by gas stripping. J Ind Microbiol Biotechnol 34:771–777CrossRefGoogle Scholar
  7. 7.
    Qureshi N, Li X-L, Hughes S, Saha BC, Cotta MA (2006) Butanol Production from corn fiber xylan using Clostridium acetobutylicum. Biotechnol Prog 22:673–680CrossRefGoogle Scholar
  8. 8.
    Qureshi N, Ezeji TC (2008) Butanol, “a superior biofuel” production from agricultural residues (renewable biomass): recent progress in technology. Biofuels Bioprod Biorefining 2:319–330CrossRefGoogle Scholar
  9. 9.
    Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30:419–427CrossRefGoogle Scholar
  10. 10.
    Jurgens G, Survase S, Berezina O, Sklavounos E, Linnekoski J, Kurkijärvi A, Väkevä M, van Heiningen A, Granström T (2012) Butanol production from lignocellulosics. Biotechnol Lett 34:1415–1434CrossRefGoogle Scholar
  11. 11.
    Cai D, Zhang T, Zheng J, Chang Z, Wang Z, Qin PY, Tan TW (2013) Biobutanol from sweet sorghum bagasse hydrolysate by a hybrid pervaporation process. Bioresour Technol 145:97–102CrossRefGoogle Scholar
  12. 12.
    Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469CrossRefGoogle Scholar
  13. 13.
    Li K, Liu S, Liu X (2014) An overview of algae bioethanol production. Int J Energy Res 38:965–977CrossRefGoogle Scholar
  14. 14.
    van der Wal H, Sperber BLHM, Houweling-Tan B, Bakker RRC, Brandenburg W, López-Contreras AM (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol 128:431–437CrossRefGoogle Scholar
  15. 15.
    Feng D, Liu H, Li F, Jiang P, Qin S (2011) Optimization of dilute acid hydrolysis of Enteromorpha. Chinese J Oceanol Limnol 29:1243–1248CrossRefGoogle Scholar
  16. 16.
    Mo X, Pei J, Guo Y, Lin L, Peng L, Kou C, Fan D, Pang H (2015) Genome Sequence of Clostridium acetobutylicum GXAS18-1, a Novel Biobutanol Production Strain. Genome Announc 3:e00033–e00015CrossRefGoogle Scholar
  17. 17.
    Bahl H, Andersch W, Braun K, Gottschalk G (1982) Effect of pH and butyrate concentration on the production of acetone and butanol by Clostridium acetobutylicum grown in continuous culture. Eur J Appl Microbiol Biotechnol 14:17–20CrossRefGoogle Scholar
  18. 18.
    Millat T, Janssen H, Bahl H, Fischer R, Wolkenhauer O (2013) Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum in continuous culture. Microb Biotechnol 6:526–539CrossRefGoogle Scholar
  19. 19.
    AOAC(Association of Official Analysis Chemists) (1995) Official methods of analysis of the association of official analytical chemists, 16th edn. Association of Official Analysis Chemists, ArlingtonGoogle Scholar
  20. 20.
    Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97:2402–2406CrossRefGoogle Scholar
  21. 21.
    Silva DJ (1990) Análise de alimentos: Métodos químicos e biológicos.Viçosa, BrazilGoogle Scholar
  22. 22.
    James CS (1996) Analytical chemistry of foods. Chapman and Hall, New YorkGoogle Scholar
  23. 23.
    Mandels M, Andreotti R, Roche C (1976) Measurement of saccharifying cellulase. Biotechnol Bioeng Symp 6:21–33Google Scholar
  24. 24.
    Kubicek CP (1982) beta-Glucosidase excretion by Trichoderma pseudokoningii: correlation with cell wall bound beta-1.3-glucanase activities. Arch Microbiol 132:349–354CrossRefGoogle Scholar
  25. 25.
    Kheyrandish M, Asadollahi MA, Jeihanipour A, Doostmohammadi M, Rismani-Yazdi H, Karimi K (2015) Direct production of acetone–butanol–ethanol from waste starch by free and immobilized Clostridium acetobutylicum. Fuel 142:129–133CrossRefGoogle Scholar
  26. 26.
    Redding AP, Wang Z, Keshwani DR, Cheng JJ (2011) High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresour Technol 102:1415–1424CrossRefGoogle Scholar
  27. 27.
    Ahn DJ, Kim SK, Yun HS (2012) Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae. Bioprocess Biosyst Eng 35:35–41CrossRefGoogle Scholar
  28. 28.
    Millat T, Janssen H, Thorn GJ, King JR, Bahl H, Fischer RJ, Wolkenhauer O (2013) A shift in the dominant phenotype governs the pH-induced metabolic switch of Clostridium acetobutylicumin phosphate-limited continuous cultures. Appl Microbiol Biotechnol 97:6451–6466CrossRefGoogle Scholar
  29. 29.
    Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524PubMedPubMedCentralGoogle Scholar
  30. 30.
    Li T, Yan Y, He J (2014) Reducing cofactors contribute to the increase of butanol production by a wild-type Clostridium sp. strain BOH3. Bioresour Technol 155:220–228CrossRefGoogle Scholar
  31. 31.
    Ra CH, Jeong G-T, Kim S-K (2017) Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control. Bioprocess Biosyst Eng 40:403–411CrossRefGoogle Scholar
  32. 32.
    Yang X, Tu M, Xie R, Adhikari S, Tong Z (2013) A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum. AMB Express 3:3CrossRefGoogle Scholar
  33. 33.
    Zhang J, Wang M, Gao M, Fang X, Yano S, Qin S, Xia R (2013) Efficient acetone–butanol–ethanol production from corncob with a new pretreatment technology—wet disk milling. BioEnergy Res 6:35–43CrossRefGoogle Scholar
  34. 34.
    Ren C, Gu Y, Hu S, Wu Y, Wang P, Yang Y, Yang C, Yang S, Jiang W (2010) Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum. Metab Eng 12:446–454CrossRefGoogle Scholar
  35. 35.
    Geng Q, Park C-H (1993) Controlled-pH batch butanol-acetone fermentation by low acid producing Clostridium acetobutylicum B18. Biotechnol Lett 15:421–426CrossRefGoogle Scholar
  36. 36.
    Tashiro Y, Shinto H, Hayashi M, Baba S, Kobayashi G, Sonomoto K (2007) Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen. J Biosci Bioeng 104:238–240CrossRefGoogle Scholar
  37. 37.
    Yang M, Kuittinen S, Zhang J, Vepsäläinen J, Keinänen M, Pappinen A (2015) Co-fermentation of hemicellulose and starch from barley straw and grain for efficient pentoses utilization in acetone–butanol–ethanol production. Bioresour Technol 179:128–135CrossRefGoogle Scholar
  38. 38.
    Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA (2010) Production of butanol (a biofuel) from agricultural residues: Part I – Use of barley straw hydrolysate. Biomass bioenergy 34:559–565CrossRefGoogle Scholar
  39. 39.
    Linggang S, Yee Phang L, Wasoh H, Abd-Aziz S (2013) Acetone–Butanol–Ethanol Production by Clostridium acetobutylicum ATCC 824 using sago pith residues hydrolysate. BioEnergy Res 6:321–328CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Trung Hau Nguyen
    • 1
  • In Yung Sunwoo
    • 1
  • Chae Hun Ra
    • 2
  • Gwi-Taek Jeong
    • 1
  • Sung-Koo Kim
    • 1
  1. 1.Department of BiotechnologyPukyong National UniversityBusanRepublic of Korea
  2. 2.Department of Food Science and BiotechnologyHankyong National UniversityAnseongRepublic of Korea

Personalised recommendations