Advertisement

Influence of amino acids and vitamins on the growth of gdhA derivative Pasteurella multocida B:2 for use as an animal vaccine

  • Siti Nur Hazwani Oslan
  • Joo Shun Tan
  • Mohd Zamri Saad
  • Murni Halim
  • Mohd-Shamzi Mohamed
  • Arbakariya B. Ariff
Research Paper

Abstract

Pasteurella multocida serotype B:2 is the causative agent of haemorrhagic septicaemia, a fatal disease in cattle and buffaloes. For use as a vaccine in the treatment of HS disease, an efficient cultivation of attenuated gdhA derivative P. multocida B:2 (mutant) for mass production of viable cells is required. In this study, the role of amino acids and vitamins on the growth of this particular bacterium was investigated. Initially, three basal media (Brain–heart infusion, Terrific broth, and defined medium YDB) were assessed in terms of growth performance of P. multocida B:2. YDB medium was selected and redesigned to take into account the effects of amino acids (glutamic acid, cysteine, glycine, methionine, lysine, tyrosine, and histidine) and vitamins (vitamin B1, nicotinic acid, riboflavin, pyridoxine, pantothenic acid, and biotin). High viable cell number was largely affected by the availability of micronutrient components and macronutrients. Histidine was essential for the growth whereby a traceable amount (20 mM) was found to greatly enhance the growth of gdhA derivative P. multocida B:2 mutant (6.6 × 109 cfu/mL) by about 19 times as compared to control culture (3.5 × 108 cfu/mL). In addition, amongst the vitamins added, riboflavin exhibited the highest impact on the viability of gdhA derivative P. multocida B:2 mutant (5.3 × 109 cfu/mL). Though the combined histidine and riboflavin in the culture eventually did not promote the stacking impact on cell growth and cell viability, nonetheless, they were still essential and important in either growth medium or production medium.

Keywords

GdhA derivative Pasteurella multocida B:2 Cell viability Amino acid Vitamins 

Notes

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Abdullah FFJ, Adamu L, Osman AY, Zakaria Z, Abdullah R, Saad MZ, Saharee AA (2013) Clinico-pathological responses of calves associated with infection of” Pasteurella multocida” Type B and the bacterial lipopolysaccharide and outer membrane protein immunogens. Int J Anim Vet Adv 5:190–198Google Scholar
  2. 2.
    Prasannavadhana A, Kumar S, Thomas P, Sarangi LN, Gupta SK, Priyadarshini A, Nagaleekar VK, Singh VP (2014) Outer membrane proteome analysis of indian strain of Pasteurella multocida serotype B: 2 by MALDI-TOF/MS analysis. Sci World JGoogle Scholar
  3. 3.
    Tabatabaei M, Jula GM, Jabbari A, Esmailzadeh M (2007) Vaccine efficacy in cattle against hemorrhagic septicemia with live attenuated aroA mutant of Pasteurella multocida B: 2 strain. J Cell Anim Biol 1:062–065Google Scholar
  4. 4.
    Oslan SNH (2013) In vivo survivality and optimization of parameters for biomass production of GDHA derivative of Pasteurella multocida B: 2. Universiti Putra MalaysiaGoogle Scholar
  5. 5.
    Katechakis N, Maraki S, Dramitinou I, Marolachaki E, Koutla C, Ioannidou E (2018) An unusual case of Pasteurella multocida bacteremic meningitis. J Infect Public Health.  https://doi.org/10.1016/j.jiph.2018.05.012 CrossRefPubMedGoogle Scholar
  6. 6.
    Othman SS (2007) Construction of an attenuated Pasteurella multocida B: 2 by mutation in the gdha gene. Universiti Putra MalaysiaGoogle Scholar
  7. 7.
    Zamri-Saad M, Ernie Z, Sabri M (2006) Protective effect following intranasal exposure of goats to live Pasteurella multocida B: 2. Trop Anim Health Prod 38:541–546CrossRefGoogle Scholar
  8. 8.
    Oppermann T, Busse N, Czermak P (2017) Mannheimia haemolytica growth and leukotoxin production for vaccine manufacturing—a bioprocess review. Electron J Biotechnol 28:95–100CrossRefGoogle Scholar
  9. 9.
    van Rensburg E, du Preez JC (2007) Effect of pH, temperature and nutrient limitations on growth and leukotoxin production by Mannheimia haemolytica in batch and continuous culture. J Appl Microbiol 102:1273–1282CrossRefGoogle Scholar
  10. 10.
    Li X, Shi H, Wang Y, Zhang S, Chu J, Zhang M, Huang M, Zhuang Y (2011) Effects of vitamins (nicotinic acid, vitamin B 1 and biotin) on phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5. Int J Hydrogen Energy 36:9620–9625CrossRefGoogle Scholar
  11. 11.
    Leonardo MR, Dailly Y, Clark DP (1996) Role of NAD in regulating the adhE gene of Escherichia coli. J Bacteriol 178:6013–6018CrossRefGoogle Scholar
  12. 12.
    Dhawan S, Kuhad RC (2002) Effect of amino acids and vitamins on laccase production by the bird’s nest fungus Cyathus bulleri. Bioresour Technol 84:35–38CrossRefGoogle Scholar
  13. 13.
    Sarah S, Zamri-Saad M, Zunita Z, Raha A (2006) Molecular cloning and sequence analysis of gdhA gene of Pasteurella multocida B: 2. J Anim Vet Adv 5:1146–1149Google Scholar
  14. 14.
    Grijspeerdt K, Vanrolleghem P (1999) Estimating the parameters of the Baranyi model for bacterial growth. Food Microbiol 16:593–605CrossRefGoogle Scholar
  15. 15.
    Mohamed MS, Tan JS, Kadkhodaei S, Mohamad R, Mokhtar MN, Ariff AB (2014) Kinetics and modeling of microalga Tetraselmis sp. FTC 209 growth with respect to its adaptation toward different trophic conditions. Biochem Eng J 88:30–41CrossRefGoogle Scholar
  16. 16.
    Baranyi J, Roberts TA (1994) A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23(3–4):277–294CrossRefGoogle Scholar
  17. 17.
    Shah A, Kamboh A, Rajput N, Korejo N (2008) Optimization of physico-chemical conditions for the growth of Pasteurella multocida in vitro. J Agric Soc SciGoogle Scholar
  18. 18.
    Zhang G (2013) The essential amino acids requirements for Oenococcus Oeni growth and organic acids metabolism. Afr J Microbiol Res 7:1591–1597CrossRefGoogle Scholar
  19. 19.
    Paustian ML, May BJ, Kapur V (2002) Transcriptional response of Pasteurella multocida to nutrient limitation. J Bacteriol 184:3734–3739CrossRefGoogle Scholar
  20. 20.
    Fernández A, Saguir F, Manca de Nadra M (2003) Effect of amino acids and peptides on growth of Pediococcus pentosaceus from wine. Lat Am Appl Res 33:225–229Google Scholar
  21. 21.
    Dashty M (2013) A quick look at biochemistry: carbohydrate metabolism. Clin Biochem 46:1339–1352CrossRefGoogle Scholar
  22. 22.
    Kaleta C, Schäuble S, Rinas U, Schuster S (2013) Metabolic costs of amino acid and protein production in Escherichia coli. Biotechnol J 8:1105–1114CrossRefGoogle Scholar
  23. 23.
    Bender RA (2012) Regulation of the histidine utilization (hut) system in bacteria. Microbiol Mol Biol Rev 76:565–584CrossRefGoogle Scholar
  24. 24.
    Hellio C, Veron B, Le Gal Y (2004) Amino acid utilization by Chlamydomonas reinhardtii: specific study of histidine. Plant Physiol Biochem 42:257–264CrossRefGoogle Scholar
  25. 25.
    Magasanik B (1992) Regulation of nitrogen utilization. Cold Spring Harbor Monogr Arch 21:283–317Google Scholar
  26. 26.
    Vogl C, Grill S, Schilling O, Stülke J, Mack M, Stolz J (2007) Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. J Bacteriol 189:7367–7375CrossRefGoogle Scholar
  27. 27.
    Abbas CA, Sibirny AA (2011) Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 75:321–360CrossRefGoogle Scholar
  28. 28.
    Kosbb S (1968) Vitamin requirements of bacteria and yeasts. Vitamin requirements of bacteria and yeasts. ThomasGoogle Scholar
  29. 29.
    Tang S, Boehme L, Lam H, Zhang Z (2009) Pichia pastoris fermentation for phytase production using crude glycerol from biodiesel production as the sole carbon source. Biochem Eng J 43:157–162CrossRefGoogle Scholar
  30. 30.
    Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Sci 240:1302CrossRefGoogle Scholar
  31. 31.
    Baumann K, Carnicer M, Dragosits M, Graf AB, Stadlmann J, Jouhten P, Maaheimo H, Gasser B, Albiol J, Mattanovich D (2010) A multi-level study of recombinant Pichia pastoris in different oxygen conditions. ‎BMC Syst Biol 4:141CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Siti Nur Hazwani Oslan
    • 1
  • Joo Shun Tan
    • 2
  • Mohd Zamri Saad
    • 3
  • Murni Halim
    • 4
  • Mohd-Shamzi Mohamed
    • 4
  • Arbakariya B. Ariff
    • 1
    • 4
  1. 1.Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaUPM SerdangMalaysia
  2. 2.Bioprocess Technology, School of Industrial TechnologyUniversiti Sains MalaysiaGelugorMalaysia
  3. 3.Department of Veterinary Pathology and Microbiology, Faculty of Veterinary MedicineUniversiti Putra MalaysiaUPM SerdangMalaysia
  4. 4.Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaUPM SerdangMalaysia

Personalised recommendations