Advertisement

Bioprocess and Biosystems Engineering

, Volume 42, Issue 2, pp 173–186 | Cite as

Emerging techniques for cell disruption and extraction of valuable bio-molecules of microalgae Nannochloropsis sp.

  • Rui ZhangEmail author
  • Oleksii Parniakov
  • Nabil Grimi
  • Nikolai Lebovka
  • Luc Marchal
  • Eugène Vorobiev
Critical Review
  • 174 Downloads

Abstract

Microalgae of Nannochloropsis sp. present valuable source of bio-molecules (pigments, lipids, proteins) that have nutritional potential for the prevention and treatment of human diseases. Moreover, some species of Nannochloropsis are the promising sources of biofuels and excellent candidates for the replacement of classical biofuel crops. This review describes and compares the efficiency of different conventional and novel techniques that can be used for cell disruption and recovery of bio-molecules from Nannochloropsis sp. Classification of different extraction techniques includes chemical, enzymatic, mechanical and other physical methods. The detailed analysis of extraction efficiency assisted by pressure and temperature (subcritical and supercritical fluids, hydrothermal liquefaction), ultrasound, microwaves, and pulsed electric energy (pulsed electric fields and high voltage electrical discharges) is presented. The general discussion includes comparison between techniques, their effectiveness for cell disruption and selectivity of bio-molecules extraction from Nannochloropsis sp. The cost-effectiveness, benefits and limitations of different techniques are also analyzed.

Graphical abstract

Keywords

Microalgae Nannochloropsis sp. Extraction Bio-molecules Disruption techniques 

Notes

Acknowledgements

Rui Zhang would like to acknowledge the financial support of China Scholarship Council for thesis fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

449_2018_2038_MOESM1_ESM.doc (157 kb)
Supplementary material 1 (DOC 157 KB)

References

  1. 1.
    Makri A, Bellou S, Birkou M et al (2011) Lipid synthesized by micro-algae grown in laboratory-and industrial-scale bioreactors. Eng Life Sci 11:52–58CrossRefGoogle Scholar
  2. 2.
    Ariede MB, Candido TM, Jacome ALM et al (2017) Cosmetic attributes of algae—a review. Algal Res 25:483–487CrossRefGoogle Scholar
  3. 3.
    Giordano M, Wang Q (2018) Microalgae for industrial purposes. In: Biomass and green chemistry. Springer, pp 133–167Google Scholar
  4. 4.
    Raheem A, Prinsen P, Vuppaladadiyam AK et al (2018) A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J Clean Prod 181:42–59CrossRefGoogle Scholar
  5. 5.
    Bellou S, Triantaphyllidou I-E, Aggeli D et al (2016) Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35CrossRefGoogle Scholar
  6. 6.
    Bellou S, Baeshen MN, Elazzazy AM et al (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32:1476–1493CrossRefGoogle Scholar
  7. 7.
    Bellou S, Aggelis G (2013) Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J Biotechnol 164:318–329CrossRefGoogle Scholar
  8. 8.
    Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63CrossRefGoogle Scholar
  9. 9.
    Khetkorn W, Rastogi RP, Incharoensakdi A et al (2017) Microalgal hydrogen production—a review. Biores Technol 243:1194–1206CrossRefGoogle Scholar
  10. 10.
    Bux F (2013) Biotechnological applications of microalgae. Biodiesel and value-added products. CRC Press, Boca RatonCrossRefGoogle Scholar
  11. 11.
    Bustillos LGT (2015) Microalgae and other phototrophic bacteria: culture, processing, recovery and new products. Nova Science Pub Inc, New YorkGoogle Scholar
  12. 12.
    Dourou M, Tsolcha ON, Tekerlekopoulou AG et al (2018) Fish farm effluents are suitable growth media for Nannochloropsis gaditana, a polyunsaturated fatty acid producing microalga. Eng Life Sci.  https://doi.org/10.1002/elsc.201800064 Google Scholar
  13. 13.
    Malibari R, Sayegh F, Elazzazy AM et al (2018) Reuse of shrimp farm wastewater as growth medium for marine microalgae isolated from red sea–Jeddah. J Clean Prod 198:160–169CrossRefGoogle Scholar
  14. 14.
    Günerken E, d’Hondt E, Eppink MHM et al (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33:243–260CrossRefGoogle Scholar
  15. 15.
    Vermuë MH, Eppink MHM, Wijffels RH et al (2018) Multi-product microalgae biorefineries: from concept towards reality. Trends Biotechnol 36(2):216–227CrossRefGoogle Scholar
  16. 16.
    Fietz S, Bleiß W, Hepperle D et al (2005) First record of Nannochloropsis limnetica (Eustigmatophyceae) in the autotrophic picoplankton from Lake Baikal. J Phycol 41:780–790CrossRefGoogle Scholar
  17. 17.
    Gu N, Lin Q, Li G et al (2012) Effect of salinity on growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179. Eng Life Sci 12:631–637CrossRefGoogle Scholar
  18. 18.
    Lin J-H, Lee D-J, Chang J-S (2015) Lutein production from biomass: Marigold flowers versus microalgae. Biores Technol 184:421–428CrossRefGoogle Scholar
  19. 19.
    Adam F, Abert-Vian M, Peltier G, Chemat F (2012) “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Biores Technol 114:457–465CrossRefGoogle Scholar
  20. 20.
    Lee SY, Cho JM, Chang YK, Oh Y-K (2017) Cell disruption and lipid extraction for microalgal biorefineries: a review. Biores Technol 244:1317–1328CrossRefGoogle Scholar
  21. 21.
    Beacham TA, Bradley C, White DA et al (2014) Lipid productivity and cell wall ultrastructure of six strains of Nannochloropsis: implications for biofuel production and downstream processing. Algal Res 6:64–69CrossRefGoogle Scholar
  22. 22.
    D’Hondt E, Martín-Juárez J, Bolado S et al (2017) 6 - Cell disruption technologies. In: Gonzalez-Fernandez C, Muñoz R (eds) Microalgae-based biofuels and bioproducts. Woodhead Publishing Books – Elsevier, Sawston, Cambridge, pp 133–154CrossRefGoogle Scholar
  23. 23.
    Safi C, Charton M, Pignolet O et al (2013) Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. J Appl Phycol 25:523–529CrossRefGoogle Scholar
  24. 24.
    Kumar SPJ, Kumar GV, Dash A et al (2017) Sustainable green solvents and techniques for lipid extraction from microalgae: a review. Algal Res 21:138–147CrossRefGoogle Scholar
  25. 25.
    Zhang F, Cheng L-H, Xu X-H et al (2011) Screening of biocompatible organic solvents for enhancement of lipid milking from Nannochloropsis sp. Process Biochem 46:1934–1941CrossRefGoogle Scholar
  26. 26.
    Chua ET, Schenk PM (2017) A biorefinery for Nannochloropsis: induction, harvesting, and extraction of EPA-rich oil and high-value protein. Bioresource Technol 244(Part 2):1416–1424CrossRefGoogle Scholar
  27. 27.
    Moradi-Kheibari N, Ahmadzadeh H, Hosseini M (2017) Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis. Bioprocess Biosyst Eng 40:1363–1373CrossRefGoogle Scholar
  28. 28.
    Chatsungnoen T, Chisti Y (2016) Optimization of oil extraction from Nannochloropsis salina biomass paste. Algal Res 15:100–109CrossRefGoogle Scholar
  29. 29.
    Xu L, Brilman DWFW, Withag JAM et al (2011) Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis. Biores Technol 102:5113–5122CrossRefGoogle Scholar
  30. 30.
    Choi S-A, Jung J-Y, Kim K et al (2014) Effects of molten-salt/ionic-liquid mixture on extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101. Bioprocess Biosyst Eng 37:2199–2204CrossRefGoogle Scholar
  31. 31.
    Olkiewicz M, Caporgno MP, Font J et al (2015) A novel recovery process for lipids from microalgae for biodiesel production using a hydrated phosphonium ionic liquid. Green Chem 17:2813–2824CrossRefGoogle Scholar
  32. 32.
    Park J-Y, Park MS, Lee Y-C, Yang J-W (2015) Advances in direct transesterification of algal oils from wet biomass. Biores Technol 184:267–275CrossRefGoogle Scholar
  33. 33.
    Chen L, Li R, Ren X, Liu T (2016) Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica. Biores Technol 214:138–143CrossRefGoogle Scholar
  34. 34.
    Samorì C, Barreiro DL, Vet R et al (2013) Effective lipid extraction from algae cultures using switchable solvents. Green Chem 15:353–356CrossRefGoogle Scholar
  35. 35.
    Long RD, Abdelkader E, others (2011) Mixed-polarity azeotropic solvents for efficient extraction of lipids from Nannochloropsis microalgae. Am J Biochem Biotechnol 7:70–73CrossRefGoogle Scholar
  36. 36.
    Marić M, Grassino AN, Zhu Z et al (2018) An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci Technol 76:28–37CrossRefGoogle Scholar
  37. 37.
    Zhu Z, Li S, He J et al (2018) Enzyme-assisted extraction of polyphenol from edible lotus (Nelumbo nucifera) rhizome knot: ultra-filtration performance and HPLC-MS2 profile. Food Res Int 111:291–298CrossRefGoogle Scholar
  38. 38.
    Zuorro A, Miglietta S, Familiari G, Lavecchia R (2016) Enhanced lipid recovery from Nannochloropsis microalgae by treatment with optimized cell wall degrading enzyme mixtures. Biores Technol 212:35–41CrossRefGoogle Scholar
  39. 39.
    Maffei G, Bracciale MP, Broggi A et al (2018) Effect of an enzymatic treatment with cellulase and mannanase on the structural properties of Nannochloropsis microalgae. Biores Technol 249:592–598CrossRefGoogle Scholar
  40. 40.
    Wu C, Xiao Y, Lin W et al (2017) Aqueous enzymatic process for cell wall degradation and lipid extraction from Nannochloropsis sp. Biores Technol 223:312–316CrossRefGoogle Scholar
  41. 41.
    Safi C, Olivieri G, Campos RP et al (2017) Biorefinery of microalgal soluble proteins by sequential processing and membrane filtration. Biores Technol 225:151–158CrossRefGoogle Scholar
  42. 42.
    Richmond A, Hu Q (2013) Handbook of microalgal culture: applied phycology and biotechnology, Second Edition. Wiley-Blackwell, HobokenGoogle Scholar
  43. 43.
    Kwak M, Kang SG, Hong W-K et al (2018) Simultaneous cell disruption and lipid extraction of wet aurantiochytrium sp. KRS101 using a high shear mixer. Bioprocess Biosyst Eng 41:671–678CrossRefGoogle Scholar
  44. 44.
    Lee D-J, Chang J-S, Lai J-Y (2015) Microalgae–microbial fuel cell: a mini review. Biores Technol 198:891–895CrossRefGoogle Scholar
  45. 45.
    Grimi N, Dubois A, Marchal L et al (2014) Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Biores Technol 153:254–259CrossRefGoogle Scholar
  46. 46.
    Abbassi A, Ali M, Watson IA (2014) Temperature dependency of cell wall destruction of microalgae with liquid nitrogen pretreatment and hydraulic pressing. Algal Res 5:190–194CrossRefGoogle Scholar
  47. 47.
    Yen H-W, Yang S-C, Chen C-H et al (2015) Supercritical fluid extraction of valuable compounds from microalgal biomass. Biores Technol 184:291–296CrossRefGoogle Scholar
  48. 48.
    Sánchez-Camargo DP, Ibáñez A, Cifuentes E, Herrero A M (2017) Bioactives obtained from plants, seaweeds, microalgae and food by-products using pressurized liquid extraction and supercritical fluid extraction. Compr Analytical Chem 76:27–51CrossRefGoogle Scholar
  49. 49.
    Patel B, Guo M, Izadpanah A et al (2016) A review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing. Biores Technol 199:288–299CrossRefGoogle Scholar
  50. 50.
    Lorenzen J, Igl N, Tippelt M et al (2017) Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant. Bioprocess Biosyst Eng 40:911–918CrossRefGoogle Scholar
  51. 51.
    Caporgno MP, Pruvost J, Legrand J et al (2016) Hydrothermal liquefaction of Nannochloropsis oceanica in different solvents. Biores Technol 214:404–410CrossRefGoogle Scholar
  52. 52.
    Barreiro DL, Riede S, Hornung U et al (2015) Hydrothermal liquefaction of microalgae: effect on the product yields of the addition of an organic solvent to separate the aqueous phase and the biocrude oil. Algal Res 12:206–212CrossRefGoogle Scholar
  53. 53.
    Chemat F, Rombaut N, Sicaire A-G et al (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34:540–560CrossRefGoogle Scholar
  54. 54.
    Greenly JM, Tester JW (2015) Ultrasonic cavitation for disruption of microalgae. Biores Technol 184:276–279CrossRefGoogle Scholar
  55. 55.
    Natarajan R, Ang WMR, Chen X et al (2014) Lipid releasing characteristics of microalgae species through continuous ultrasonication. Biores Technol 158:7–11CrossRefGoogle Scholar
  56. 56.
    Bermúdez Menéndez JM, Arenillas A, Menéndez Díaz J et al (2014) Optimization of microalgae oil extraction under ultrasound and microwave irradiation. J Chem Technol Biotechnol 89:1779–1784CrossRefGoogle Scholar
  57. 57.
    Parniakov O, Apicella E, Koubaa M et al (2015) Ultrasound-assisted green solvent extraction of high-added value compounds from microalgae Nannochloropsis sp. Biores Technol 198:262–267CrossRefGoogle Scholar
  58. 58.
    Ferreira AF, Dias APS, Silva CM, Costa M (2016) Effect of low frequency ultrasound on microalgae solvent extraction: analysis of products, energy consumption and emissions. Algal Res 14:9–16CrossRefGoogle Scholar
  59. 59.
    Eldalatony MM, Kabra AN, Hwang J-H et al (2016) Pretreatment of microalgal biomass for enhanced recovery/extraction of reducing sugars and proteins. Bioprocess Biosyst Eng 39:95–103CrossRefGoogle Scholar
  60. 60.
    Wang M, Yuan W, Jiang X et al (2014) Disruption of microalgal cells using high-frequency focused ultrasound. Biores Technol 153:315–321CrossRefGoogle Scholar
  61. 61.
    Wang M, Yuan W (2015) Microalgal cell disruption in a high-power ultrasonic flow system. Biores Technol 193:171–177CrossRefGoogle Scholar
  62. 62.
    Li H, Qu Y, Yang Y et al (2016) Microwave irradiation–a green and efficient way to pretreat biomass. Bioresour Technol 199:34–41CrossRefGoogle Scholar
  63. 63.
    Iqbal J, Theegala C (2013) Microwave assisted lipid extraction from microalgae using biodiesel as co-solvent. Algal Res 2:34–42CrossRefGoogle Scholar
  64. 64.
    Biller P, Friedman C, Ross AB (2013) Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products. Biores Technol 136:188–195CrossRefGoogle Scholar
  65. 65.
    Loong TC, Idris A (2014) Rapid alkali catalyzed transesterification of microalgae lipids to biodiesel using simultaneous cooling and microwave heating and its optimization. Biores Technol 174:311–315CrossRefGoogle Scholar
  66. 66.
    Teo CL, Idris A (2014) Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production. Biores Technol 171:477–481CrossRefGoogle Scholar
  67. 67.
    Koberg M, Cohen M, Ben-Amotz A, Gedanken A (2011) Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation. Biores Technol 102:4265–4269CrossRefGoogle Scholar
  68. 68.
    Wahidin S, Idris A, Shaleh SRM (2016) Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production. Biores Technol 206:150–154CrossRefGoogle Scholar
  69. 69.
    Patil PD, Reddy H, Muppaneni T et al (2013) In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions. Biores Technol 139:308–315CrossRefGoogle Scholar
  70. 70.
    Teo CL, Idris A (2014) Evaluation of direct transesterification of microalgae using microwave irradiation. Biores Technol 174:281–286CrossRefGoogle Scholar
  71. 71.
    Barba FJ, Parniakov O, Pereira SA et al (2015) Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res Int 77:773–798CrossRefGoogle Scholar
  72. 72.
    Safi C, Rodriguez LC, Mulder WJ et al (2017) Energy consumption and water-soluble protein release by cell wall disruption of Nannochloropsis gaditana. Biores Technol 239:204–210CrossRefGoogle Scholar
  73. 73.
    Postma PR, Pataro G, Capitoli M et al (2016) Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field–temperature treatment. Biores Technol 203:80–88CrossRefGoogle Scholar
  74. 74.
    Parniakov O, Barba FJ, Grimi N et al (2015) Pulsed electric field assisted extraction of nutritionally valuable compounds from microalgae Nannochloropsis spp. using the binary mixture of organic solvents and water. Innovative Food Sci Emerg Technol 27:79–85CrossRefGoogle Scholar
  75. 75.
    Parniakov O, Barba FJ, Grimi N et al (2015) Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae nannochloropsis. Algal Res 8:128–134CrossRefGoogle Scholar
  76. 76.
    Coustets M, Joubert-Durigneux V, Hérault J et al (2015) Optimization of protein electroextraction from microalgae by a flow process. Bioelectrochemistry 103:74–81CrossRefGoogle Scholar
  77. 77.
    Martínez JM, Luengo E, Saldaña G et al (2016) C-phycocyanin extraction assisted by pulsed electric field from Artrosphira platensis. Food Res Int 99:1042–1047CrossRefGoogle Scholar
  78. 78.
    Luengo E, Martínez JM, Bordetas A et al (2015) Influence of the treatment medium temperature on lutein extraction assisted by pulsed electric fields from Chlorella vulgaris. Innov Food Sci Emerg Technol 29:15–22CrossRefGoogle Scholar
  79. 79.
    Zbinden MDA, Sturm BSM, Nord RD et al (2013) Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae. Biotechnol Bioeng 110:1605–1615CrossRefGoogle Scholar
  80. 80.
    Lai YS, Parameswaran P, Li A et al (2014) Effects of pulsed electric field treatment on enhancing lipid recovery from the microalga, Scenedesmus. Biores Technol 173:457–461CrossRefGoogle Scholar
  81. 81.
    Eing C, Goettel M, Straessner R et al (2013) Pulsed electric field treatment of microalgae—benefits for microalgae biomass processing. IEEE Trans Plasma Sci 41:2901–2907CrossRefGoogle Scholar
  82. 82.
    Silve A, Papachristou I, Wüstner R et al (2018) Extraction of lipids from wet microalga Auxenochlorella protothecoides using pulsed electric field treatment and ethanol-hexane blends. Algal Res 29:212–222CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rui Zhang
    • 1
    Email author
  • Oleksii Parniakov
    • 1
  • Nabil Grimi
    • 1
  • Nikolai Lebovka
    • 1
    • 2
  • Luc Marchal
    • 3
  • Eugène Vorobiev
    • 1
  1. 1.Laboratoire de Transformations Intégrées de la Matière Renouvelable, EA 4297, Centre de Recherches de RoyallieuSorbonne Universités, Université de Technologie de CompiègneCompiègne CedexFrance
  2. 2.Institute of Biocolloidal Chemistry named after F. D. OvcharenkoNAS of UkraineKyivUkraine
  3. 3.LUNAM Université, CNRS, GEPEA, Université de Nantes, UMR6144, CRTT, Boulevard de l’UniversitéSaint-Nazaire CedexFrance

Personalised recommendations