Advertisement

Bioprocess and Biosystems Engineering

, Volume 42, Issue 2, pp 213–222 | Cite as

Synthesis of a green polyurethane foam from a biopolyol obtained by enzymatic glycerolysis and its use for immobilization of lipase NS-40116

  • Daniela Bresolin
  • Arthur S. Estrella
  • Jacqueline R. P. da Silva
  • Alexsandra Valério
  • Cláudia Sayer
  • Pedro H. H. de Araújo
  • Débora de OliveiraEmail author
Research Paper
  • 116 Downloads

Abstract

The use of green sources for materials synthesis has gained popularity in recent years. This work investigated the immobilization of lipase NS-40116 (Thermomyces lanuginosus lipase) in polyurethane foam (PUF) using a biopolyol obtained through the enzymatic glycerolysis between castor oil and glycerol, catalyzed by the commercial lipase Novozym 435 for the PUF formation. The reaction was performed to obtain biopolyol resulting in the conversion of 64% in mono- and diacylglycerol, promoting the efficient use of the reaction product as biopolyol to obtain polyurethane foam. The enzymatic derivative with immobilized lipase NS-40116 presented apparent density of 0.19 ± 0.03 g/cm3 and an immobilization yield was 94 ± 4%. Free and immobilized lipase NS-40116 were characterized in different solvents (methanol, ethanol, and propanol), temperatures (20, 40, 60 and 80 °C), pH (3, 5, 7, 9 and 11) and presence of ions Na+, Mg++, and Ca++. The support provided higher stability to the enzyme, mainly when subjected to acid pH (free lipase lost 80% of relative activity after 360 h of contact, when the enzymatic derivative lost around 22%) and high-temperature free lipase lost 50% of relative activity, while the immobilized remained 95%. The enzymatic derivative was also used for esterification reactions and conversions around 66% in fatty acid methyl esters, using abdominal chicken fat as feedstock, were obtained in the first use, maintaining this high conversion until the fourth reuse, proving that the support obtained using environmentally friendly techniques is applicable.

Keywords

Biopolyol Polyurethane foam Lipase immobilization Lipase NS-40116 Biocatalysis Environmental biotechnology 

Notes

Acknowledgements

The authors thank the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico; Laboratório Central de Microscopia Eletrônica of Universidade Federal de Santa Catarina for scanning electron microscopy images; and The Dow Chemical Company® who kindly provided polymeric diisocyanate.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Barbosa O, Ortiz C, Berenguer-Murcia Á et al (2015) Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnol Adv 33:435–456.  https://doi.org/10.1016/j.biotechadv.2015.03.006 CrossRefGoogle Scholar
  2. 2.
    Carvalho F, Paradiso P, Saramago B et al (2016) An integrated approach for the detailed characterization of an immobilized enzyme. J Mol Catal B Enzym 125:64–74.  https://doi.org/10.1016/j.molcatb.2016.01.001 CrossRefGoogle Scholar
  3. 3.
    Cortez S, Nicolau A, Flickinger MC, Mota M (2017) Biocoatings: a new challenge for environmental biotechnology. Biochem Eng J 121:25–37.  https://doi.org/10.1016/j.bej.2017.01.004 CrossRefGoogle Scholar
  4. 4.
    Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47:555–569.  https://doi.org/10.1016/j.procbio.2012.01.011 CrossRefGoogle Scholar
  5. 5.
    Tan CH, Show PL, Ooi CW et al (2015) Novel lipase purification methods - a review of the latest developments. Biotechnol J 10:31–44.  https://doi.org/10.1002/biot.201400301 CrossRefGoogle Scholar
  6. 6.
    Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J Mol Catal B Enzym 62:197–212.  https://doi.org/10.1016/j.molcatb.2009.11.010 CrossRefGoogle Scholar
  7. 7.
    Kundys A, Białecka-Florjańczyk E, Fabiszewska A, Małajowicz J (2018) Candida antarctica lipase B as catalyst for cyclic esters synthesis, their polymerization and degradation of aliphatic polyesters. J Polym Environ 26:396–407.  https://doi.org/10.1007/s10924-017-0945-1 CrossRefGoogle Scholar
  8. 8.
    Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Process Res Dev 6:446–451.  https://doi.org/10.1021/op0200165 CrossRefGoogle Scholar
  9. 9.
    Aguieiras ECG, Cavalcanti-Oliveira ED, Freire DMG (2015) Current status and new developments of biodiesel production using fungal lipases. Fuel 159:52–67.  https://doi.org/10.1016/j.fuel.2015.06.064 CrossRefGoogle Scholar
  10. 10.
    Talbert JN, Goddard JM (2012) Enzymes on material surfaces. Colloids Surfaces B Biointerfaces 93:8–19.  https://doi.org/10.1016/j.colsurfb.2012.01.003 CrossRefGoogle Scholar
  11. 11.
    Adlercreutz P (2013) Immobilisation and application of lipases in organic media. Chem Soc Rev 42:6406–6436.  https://doi.org/10.1039/c3cs35446f CrossRefGoogle Scholar
  12. 12.
    Nyari NLD, Fernandes IA, Bustamante-Vargas CE et al (2016) In situ immobilization of Candida antarctica B lipase in polyurethane foam support. J Mol Catal B Enzym 124:52–61.  https://doi.org/10.1016/j.molcatb.2015.12.003 CrossRefGoogle Scholar
  13. 13.
    Bustamante-Vargas CE, De Oliveira D, Nyari NLD et al (2015) In situ immobilization of commercial pectinase in rigid polyurethane foam and application in the hydrolysis of pectic oligosaccharides. J Mol Catal B Enzym 122:35–43.  https://doi.org/10.1016/j.molcatb.2015.08.009 CrossRefGoogle Scholar
  14. 14.
    Silva MF, Rigo D, Mossi V et al (2013) Evaluation of enzymatic activity of commercial inulinase from Aspergillus niger immobilized in polyurethane foam. Food Bioprod Process 91:54–59.  https://doi.org/10.1016/j.fbp.2012.08.003 CrossRefGoogle Scholar
  15. 15.
    Nicoletti G, Cipolatti EP, Valério A et al (2015) Evaluation of different methods for immobilization of Candida antarctica lipase B (CalB lipase) in polyurethane foam and its application in the production of geranyl propionate. Bioprocess Biosyst Eng 1739–1748.  https://doi.org/10.1007/s00449-015-1415-6
  16. 16.
    Noreen A, Zia KM, Zuber M et al (2016) Bio-based polyurethane: an efficient and environment friendly coating systems: a review. Prog Org Coatings 91:25–32.  https://doi.org/10.1016/j.porgcoat.2015.11.018 CrossRefGoogle Scholar
  17. 17.
    Janik H, Marzec M (2015) A review: fabrication of porous polyurethane scaffolds. Mater Sci Eng C 48:586–591.  https://doi.org/10.1016/j.msec.2014.12.037 CrossRefGoogle Scholar
  18. 18.
    Hood MA, Wang B, Sands JM et al (2010) Morphology control of segmented polyurethanes by crystallization of hard and soft segments. Polymer 51:2191–2198.  https://doi.org/10.1016/j.polymer.2010.03.027 CrossRefGoogle Scholar
  19. 19.
    Billiet L, Fournier D, Du Prez F (2009) Step-growth polymerization and “click” chemistry: The oldest polymers rejuvenated. Polymer 50:3877–3886.  https://doi.org/10.1016/j.polymer.2009.06.034 CrossRefGoogle Scholar
  20. 20.
    Manoel EA, dos Santos JCS, Freire DMG et al (2015) Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme Microb Technol 71:53–57.  https://doi.org/10.1016/j.enzmictec.2015.02.001 CrossRefGoogle Scholar
  21. 21.
    Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chemie Int Ed 37:1608–1633.  https://doi.org/10.1002/(SICI)1521-3773(19980703)37:12%3C1608::AID-ANIE1608%3E3.0.CO;2-V CrossRefGoogle Scholar
  22. 22.
    Bassi JJ, Todero LM, Lage FAP et al (2016) Interfacial activation of lipases on hydrophobic support and application in the synthesis of a lubricant ester. Int J Biol Macromol 92:900–909.  https://doi.org/10.1016/j.ijbiomac.2016.07.097 CrossRefGoogle Scholar
  23. 23.
    Miao S, Wang P, Su Z, Zhang S (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10:1692–1704.  https://doi.org/10.1016/j.actbio.2013.08.040 CrossRefGoogle Scholar
  24. 24.
    da Silva JAP, Cardozo NSM, Petzhold CL (2018) Enzymatic synthesis of andiroba oil based polyol for the production of flexible polyurethane foams. Ind Crops Prod 113:55–63.  https://doi.org/10.1016/j.indcrop.2018.01.020 CrossRefGoogle Scholar
  25. 25.
    Bresolin D, Valério A, de Oliveira D et al (2018) Polyurethane foams based on biopolyols from castor oil and glycerol. J Polym Environ 26:2467–2475.  https://doi.org/10.1007/s10924-017-1138-7 CrossRefGoogle Scholar
  26. 26.
    Mehta J, Bhardwaj N, Bhardwaj SK et al (2016) Recent advances in enzyme immobilization techniques: metal-organic frameworks as novel substrates. Coord Chem Rev 322:30–40.  https://doi.org/10.1016/j.ccr.2016.05.007 CrossRefGoogle Scholar
  27. 27.
    Badgujar VC, Badgujar KC, Yeole PM, Bhanage BM (2017) Immobilization of Rhizomucor miehei lipase on a polymeric film for synthesis of important fatty acid esters: kinetics and application studies. Bioprocess Biosyst Eng 40:1463–1478.  https://doi.org/10.1007/s00449-017-1804-0 CrossRefGoogle Scholar
  28. 28.
    Ory I de, Cabrera G, Ramirez M, Blandino A (2006) Immobilization of Enzymes and Cells—immobilization of cells on polyurethane foam, 2nd edn. Humana Press, TotowaGoogle Scholar
  29. 29.
    Ionescu M, Radojčić D, Wan X et al (2016) Highly functional polyols from castor oil for rigid polyurethanes. Eur Polym J.  https://doi.org/10.1016/j.eurpolymj.2016.06.006 Google Scholar
  30. 30.
    Valério A, Rovani S, Treichel H et al (2010) Optimization of mono and diacylglycerols production from enzymatic glycerolysis in solvent-free systems. Bioprocess Biosyst Eng 33:805–812.  https://doi.org/10.1007/s00449-009-0402-1 CrossRefGoogle Scholar
  31. 31.
    ASTM D6584 - Test method for determination of free and total glycerin in B-100 biodiesel methyl esters by gas chromatography. ​https://scholar.google.com.br/scholar?hl=pt-BR%26as_sdt=0%2C5%26q=test+method+for+determination+of+free+and+total+glycerin+in+B-100+biodiesel+methyl+esters+by+gas+chromatography%26btnG=
  32. 32.
    ASTM D4274-16 - Standard test methods for testing polyurethane raw materials: determination of hydroxyl numbers of polyols. ​https://scholar.google.com.br/scholar?cluster=2964665555887025638%26hl=pt-BR%26as_sdt=2005%26sciodt=1,5
  33. 33.
    ASTM D1622/D1622M-14 - Standard test method for apparent density of rigid cellular plastics. https://scholar.google.com.br/scholar?cluster=16716110521091480761%26hl=pt-BR%26as_sdt=2005%26sciodt=1,5
  34. 34.
    Chiou SH, Wu WT (2004) Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials 25:197–204.  https://doi.org/10.1016/S0142-9612(03)00482-4 CrossRefGoogle Scholar
  35. 35.
    Silva JRP da, Nurnberg AJ, Costa FP et al (2016) Hidroesterificação de Gordura Abdominal de Frango Catalisada pela Lipase NS-40116. In: Paper present at the XII Seminário Brasileiro de Tecnologia Enzimática, Caxias do Sul University, Rio Grande do Sul, 17–20 July 2016Google Scholar
  36. 36.
    UNE EN-14103 - Fat and oil derivatives, fatty acid methyl esters (FAME)—determination of ester and linolenic acid methyl ester contents. https://scholar.google.com.br/scholar?cluster=14522159786830790008%26hl=pt-BR%26as_sdt=2005%26sciodt=1,5
  37. 37.
    Valério A, Krüger RL, Ninow J et al (2009) Kinetics of solvent-free lipase-catalyzed glycerolysis of olive oil in surfactant system. J Agric Food Chem 57:8350–8356.  https://doi.org/10.1021/jf901771m CrossRefGoogle Scholar
  38. 38.
    Schulz GAS, da Silveira KC, Libardi DB et al (2011) Synthesis and characterization of mono-acylglycerols through the glycerolysis of methyl esters obtained from linseed oil. Eur J Lipid Sci Technol 113:1533–1540.  https://doi.org/10.1002/ejlt.201100079 CrossRefGoogle Scholar
  39. 39.
    Stuart BH (2006) Infrared spectroscopy of biological applications: an overview. Encycl Anal Chem 529–558.  https://doi.org/10.1002/9780470027318.a0208.pub2
  40. 40.
    Foresti ML, Valle G, Bonetto R et al (2010) FTIR, SEM and fractal dimension characterization of lipase B from Candida antarctica immobilized onto titania at selected conditions. Appl Surf Sci 256:1624–1635.  https://doi.org/10.1016/j.apsusc.2009.09.083 CrossRefGoogle Scholar
  41. 41.
    Collins SE, Lassalle V, Ferreira ML (2011) FTIR-ATR characterization of free Rhizomucor miehei lipase (RML), Lipozyme RM im and chitosan-immobilized RML. J Mol Catal B Enzym 72:220–228.  https://doi.org/10.1016/j.molcatb.2011.06.009 CrossRefGoogle Scholar
  42. 42.
    Thirumal M, Khastgir D, Singhe NK et al (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21:449–456.  https://doi.org/10.1002/app Google Scholar
  43. 43.
    Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523.  https://doi.org/10.1016/j.biotechadv.2011.09.005 CrossRefGoogle Scholar
  44. 44.
    Abdulla R, Ravindra P (2013) Characterization of cross linked Burkholderia cepacia lipase in alginate and k-carrageenan hybrid matrix. J Taiwan Inst Chem Eng 44:545–551.  https://doi.org/10.1016/j.jtice.2013.01.003 CrossRefGoogle Scholar
  45. 45.
    Secundo F (2013) Conformational changes of enzymes upon immobilisation. Chem Soc Rev 42:6250.  https://doi.org/10.1039/c3cs35495d CrossRefGoogle Scholar
  46. 46.
    Gaur R, Gupta A, Khare SK (2008) Purification and characterization of lipase from solvent tolerant Pseudomonas aeruginosa PseA. Process Biochem 43:1040–1046.  https://doi.org/10.1016/j.procbio.2008.05.007 CrossRefGoogle Scholar
  47. 47.
    Patel V, Nambiar S, Madamwar D (2014) An extracellular solvent stable alkaline lipase from Pseudomonas sp. DMVR46: Partial purification, characterization and application in non-aqueous environment. Process Biochem 49:1673–1681.  https://doi.org/10.1016/j.procbio.2014.06.007 CrossRefGoogle Scholar
  48. 48.
    Mata TM, Cardoso N, Ornelas M et al (2011) Evaluation of two purification methods of biodiesel from beef tallow, pork lard, and chicken fat. Energy Fuels 25:4756–4762.  https://doi.org/10.1021/ef2010207 CrossRefGoogle Scholar
  49. 49.
    Gameiro M, Lisboa P, Paiva A et al (2015) Supercritical carbon dioxide-based integrated continuous extraction of oil from chicken feather meal, and its conversion to biodiesel in a packed-bed enzymatic reactor, at pilot scale. Fuel 153:135–142.  https://doi.org/10.1016/j.fuel.2015.02.100 CrossRefGoogle Scholar
  50. 50.
    Hernández-Cruz MC, Meza-Gordillo R, Torrestiana-Sánchez B et al (2017) Chicken fat and biodiesel viscosity modification with additives for the formulation of biolubricants. Fuel 198:42–48.  https://doi.org/10.1016/j.fuel.2016.12.039 CrossRefGoogle Scholar
  51. 51.
    Ramalho EFSM, Santos IMG, Maia AS et al (2011) Thermal characterization of the poultry fat biodiesel. J Therm Anal Calorim 106:825–829.  https://doi.org/10.1007/s10973-011-1886-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Daniela Bresolin
    • 1
  • Arthur S. Estrella
    • 1
  • Jacqueline R. P. da Silva
    • 1
  • Alexsandra Valério
    • 1
  • Cláudia Sayer
    • 1
  • Pedro H. H. de Araújo
    • 1
  • Débora de Oliveira
    • 1
    Email author
  1. 1.Department of Chemical Engineering and Food EngineeringFederal University of Santa CatarinaFlorianopolisBrazil

Personalised recommendations