Advertisement

Bioprocess and Biosystems Engineering

, Volume 42, Issue 1, pp 63–70 | Cite as

Ethanol production from xylose is highly increased by the Kluyveromyces marxianus mutant 17694-DH1

  • Deok-Ho Kwon
  • Jae-Bum Park
  • Eunsoo Hong
  • Suk-Jin Ha
Research Paper

Abstract

Directed evolutionary approach and random mutagenesis were performed on thermotolerant yeast Kluyveromyces marxianus KCTC17694 for isolating a yeast strain producing ethanol from xylose efficiently. The isolated mutant strain, K. marxianus 17694-DH1, showed 290% and 131% improvement in ethanol concentration and ethanol production yield from xylose, respectively, as compared with the parental strain. Sequencing of the KmXYL1 gene of K. marxianus 17694-DH1 revealed substitutions of arginine and tryptophan with lysine and leucine at positions 25 and 202, respectively, as compared to the parental strain. In addition, sequencing of the KmXYL2 gene uncovered a substitution of glutamate with leucine at position 232. When enzymatic assays of xylose reductase (XR) and xylitol dehydrogenase (XDH) from the parental strain and K. marxianus 17694-DH1 were performed, XR activities were not significantly different whereas XDH activities were significantly improved in the mutant strain up to 50 °C of reaction temperatures. RNA-Seq based transcriptome analysis showed that alcohol dehydrogenases and glucose transporters were up-regulated while TCA cycle involved enzymes were down-regulated in K. marxianus 17694-DH1.

Keywords

Kluyveromyces marxianus Ethanol Xylose Xylose reductase Xylitol dehydrogenase 

Notes

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(No. 2018R1A6A1A03025582).

Supplementary material

449_2018_2014_MOESM1_ESM.docx (519 kb)
Supplementary material 1 (DOCX 519 KB)
449_2018_2014_MOESM2_ESM.xlsx (57 kb)
Supplementary material 2 (XLSX 56 KB)

References

  1. 1.
    Beringer T, Lucht W, Schaphoff S (2011) Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. Gcb Bioenergy 3:299–312CrossRefGoogle Scholar
  2. 2.
    Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combust 33:1–18CrossRefGoogle Scholar
  3. 3.
    McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54CrossRefGoogle Scholar
  4. 4.
    Poizot P, Dolhem F (2011) Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ Sci 4:2003–2019CrossRefGoogle Scholar
  5. 5.
    Haralambopoulos D, Polatidis H (2003) Renewable energy projects: structuring a multi-criteria group decision-making framework. Renew Energy 28:961–973CrossRefGoogle Scholar
  6. 6.
    Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34CrossRefGoogle Scholar
  7. 7.
    Hamelinck CN, Van Hooijdonk G, Faaij AP (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biomass Bioenergy 28:384–410CrossRefGoogle Scholar
  8. 8.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefGoogle Scholar
  9. 9.
    Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800CrossRefGoogle Scholar
  10. 10.
    Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang Y-HP (2011) Bioethanol production from pentose sugars: Current status and future prospects. Proc R Soc Lond A Math 15:4950–4962Google Scholar
  11. 11.
    Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefGoogle Scholar
  12. 12.
    Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31:353–364CrossRefGoogle Scholar
  13. 13.
    Narra M, Balasubramanian V, James JP (2016) Enhanced enzymatic hydrolysis of mild alkali pre-treated rice straw at high-solid loadings using in-house cellulases in a bench scale system. Bioprocess Biosyst Eng 39:993–1003CrossRefGoogle Scholar
  14. 14.
    Harner NK, Wen X, Bajwa PK, Austin GD, Ho C-Y, Habash MB, Trevors JT, Lee H (2015) Genetic improvement of native xylose-fermenting yeasts for ethanol production. J Ind Microbiol Biotechnol 42:1–20CrossRefGoogle Scholar
  15. 15.
    Dmytruk OV, Dmytruk KV, Abbas CA, Voronovsky AY, Sibirny AA (2008) Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. Microb Cell Fact 7:21CrossRefGoogle Scholar
  16. 16.
    Morales-Rodriguez R, Gernaey KV, Meyer AS, Sin G (2011) A mathematical model for simultaneous saccharification and co-fermentation (SSCF) of C6 and C5 sugars. Chin J Chem Eng 19:185–191CrossRefGoogle Scholar
  17. 17.
    Teixeira LC, Linden JC, Schroeder HA (1999) Optimizing peracetic acid pretreatment conditions for improved simultaneous saccharification and co-fermentation (SSCF) of sugar cane bagasse to ethanol fuel. Renew Energy 16:1070–1073CrossRefGoogle Scholar
  18. 18.
    Kim J-S, Park J-B, Jang S-W, Ha S-J (2015) Enhanced xylitol production by mutant Kluyveromyces marxianus 36907-FMEL1 due to improved xylose reductase activity. Appl Biochem Biotechnol 176:1975–1984CrossRefGoogle Scholar
  19. 19.
    Park J-B, Kim J-S, Jang S-W, Hong E, Ha S-J (2015) The application of thermotolerant yeast Kluyveromyces marxianus as a potential industrial workhorse for biofuel production. KSBB J 30:125–131CrossRefGoogle Scholar
  20. 20.
    Camargo D, Gomes SD, Sene L (2014) Ethanol production from sunflower meal biomass by simultaneous saccharification and fermentation (SSF) with Kluyveromycesmarxianus ATCC 36907. Bioprocess Biosyst Eng 37:2235–2242CrossRefGoogle Scholar
  21. 21.
    Goshima T, Negi K, Tsuji M, Inoue H, Yano S, Hoshino T, Matsushika A (2013) Ethanol fermentation from xylose by metabolically engineered strains of Kluyveromyces marxianus. J Biosci Bioeng 116:551–554CrossRefGoogle Scholar
  22. 22.
    Margaritis A, Bajpai P (1982) Direct fermentation of d-xylose to ethanol by Kluyveromyces marxianus strains. Appl Environ Microbiol 44:1039–1041Google Scholar
  23. 23.
    Park J-B, Kim J-S, Jang S-W, Kweon D-H, Hong EK, Shin WC, Ha S-J (2016) Sequence analysis of KmXYL1 genes and verification of thermotolerant enzymatic activities of xylose reductase from four Kluyveromyces marxianus strains. Biotechnol Bioprocess Eng 21:581–586CrossRefGoogle Scholar
  24. 24.
    Kim SR, Ha S-J, Kong II, Jin Y-S (2012) High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 14:336–343CrossRefGoogle Scholar
  25. 25.
    Morton RE, Evans TA (1992) Modification of the bicinchoninic acid protein assay to eliminate lipid interference in determining lipoprotein protein content. Anal Biochem 204:332–334CrossRefGoogle Scholar
  26. 26.
    Rodrussamee N, Lertwattanasakul N, Hirata K, Limtong S, Kosaka T, Yamada M (2011) Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl Microb Biotechnol 90:1573CrossRefGoogle Scholar
  27. 27.
    Zhang B, Li L, Zhang J, Gao X, Wang D, Hong J (2013) Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus. J Ind Microbiol Biotechnol 40:305–316CrossRefGoogle Scholar
  28. 28.
    Karhumaa K, Sanchez RG, Hahn-Hägerdal B, Gorwa-Grauslund M-F (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 6:5CrossRefGoogle Scholar
  29. 29.
    Zhang B, Zhang L, Wang D, Gao X, Hong J (2011) Identification of a xylose reductase gene in the xylose metabolic pathway of Kluyveromyces marxianus NBRC1777. J Ind Microbiol Biotechnol 38:2001–2010CrossRefGoogle Scholar
  30. 30.
    Lulu L, Ling Z, Dongmei W, Xiaolian G, Hisanori T, Hidehiko K, Jiong H (2013) Identification of a xylitol dehydrogenase gene from Kluyveromyces marxianus NBRC1777. Mol Biotechnol 53:159–169CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Bioengineering and TechnologyKangwon National UniversityChuncheonRepublic of Korea
  2. 2.Department of Chemical and Life Science EngineeringVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations