Bioprocess and Biosystems Engineering

, Volume 42, Issue 1, pp 1–15 | Cite as

Recent progress of algae and blue–green algae-assisted synthesis of gold nanoparticles for various applications

  • Azhar U. Khan
  • Masudulla Khan
  • Nazia Malik
  • Moo Hwan Cho
  • Mohammad Mansoob KhanEmail author
Critical Review


The hazardous effects of current nanoparticle synthesis methods have steered researchers to focus on the development of newer environmentally friendly and green methods for synthesizing nanoparticles using nontoxic chemicals. The development of environmentally friendly methods of nanoparticle synthesis with different sizes and shapes is one of the pressing challenges for the current nanotechnology. Several novel green approaches for the synthesis of AuNPs have been explored using different natural sources, such as plants, algae, bacteria, and fungi. Among organisms, algae and blue–green algae are of particular interest for nanoparticle synthesis. Gold nanoparticles (AuNPs) have a range of applications in medicine, diagnostics, catalysis, and sensors because of their significant key roles in important fields. AuNPs have attracted a significant interest for use in a variety of applications. The widespread use of AuNPs can be accredited to a combination of optical, physical, and chemical properties as well as the miscellany of size, shape, and surface composition that has been adopted through green synthesis methods.


Gold nanoparticles AuNPs Algae Blue–green algae Green synthesis Environment friendly methods 



M. M. Khan would like to acknowledge the Chemical Sciences, Faculty of Science, University Brunei Darussalam, Brunei Darussalam for the support to complete this review article. A. U. Khan would like to thank to Dr. Sandeep Bakshi, Chancellor of Jaipur National University, Jaipur 302 017, India for providing the research facilities.


  1. 1.
    Taniguchi N (1974) On the Basic Concept of Nano Technology. Proc. Intl. Conf. Prod. Eng. Tokyo, part., Japan Society of Precision Engineering 18–23Google Scholar
  2. 2.
    Buffat P, Borrel JP (1976) Size effect on the melting temperature of gold particles. Phy Rev A 13:10.1103Google Scholar
  3. 3.
    Khan MM, Lee J, Cho MH (2013) Electrochemically active biofilm mediated bio-hydrogen production catalyzed by positively charged gold nanoparticles. Int J Hydrogen Energy 38:5243–5250Google Scholar
  4. 4.
    Khan AU, Malik N, Khan M, Cho MH, Khan MM (2017) Fungi-assisted silver nanoparticles synthesis and their applications. Bioprocess Biosyst Eng 41:1–20Google Scholar
  5. 5.
    Han TH, Khan MM, Kalathil S, Lee J, Cho MH (2013) Synthesis of positively charged gold nanoparticles using a stainless-steel mesh. J Nanosci Nanotechnol 13:6140–6144Google Scholar
  6. 6.
    Khan MM, Kalathil S, Han TH, Lee J, Cho MH (2013) Positively charged gold nanoparticles synthesized by electrochemically active Biofilm-A biogenic approach. J Nanosci Nanotechnol 13:6079–6085Google Scholar
  7. 7.
    Khan ME, Khan MM, Min BK, Cho MH (2018) Microbial fuel cell assisted band gap narrowed TiO2 for visible light induced photocatalytic activities and power generation. Sci Rep 8:1723Google Scholar
  8. 8.
    Khan MM, Adil SF, Mayouf AA (2015) Metal oxides as photocatalysts. J Saudi Chem Soc 19:462–464Google Scholar
  9. 9.
    Khan ME, Khan MM, Cho MH (2018) Recent progress of metal–graphene nanostructures in photocatalysis. Nanoscale 10:9427–9440Google Scholar
  10. 10.
    ASTM (2006) American Society for Testing and Materials. Standard Terminology Relating to Nanotechnology E. 2456–06Google Scholar
  11. 11.
    Dabbousi B, Rodriguez-Viejo J, Mikulec F, Heine J, Mattoussi H, Ober R, Jensen K, Bawendi M (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystals. J Phys Chem B 101:9463–9475Google Scholar
  12. 12.
    Daniel MC, Astruc D (2004) Gold nanoparticles assembly, supra molecular chemistry, quantum-size-related properties and applications towards biological, catalysis and nanotechnology. J Chem Rev 104:293–346Google Scholar
  13. 13.
    Liu X, Dai Q, Austin L, Coutts J, Knowles G, Zou J, Chen H, Huo QA (2008) One-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticles probes with dynamics light scattering. J Am Chem Soc 130:2780–2782Google Scholar
  14. 14.
    Khan MM, Cho MH (2018) Positively charged gold nanoparticles for hydrogen peroxide detection. BioNanoScience 8(2):537–543Google Scholar
  15. 15.
    Huang D, Liao F, Molesa S, Redinger D, Subramanian V (2003) Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J Electrochem Soc 150:G412–G417Google Scholar
  16. 16.
    Liu J, Lu YA (2003) Colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:66642–66643Google Scholar
  17. 17.
    Zheng N, Stucky G (2006) A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J Am Chem Soc 128:14278–14280Google Scholar
  18. 18.
    Dong X, Lau C, lohani A, Mhaisalkar G, Kasim J, Shen Z, Ho X, Rogers J, Li L (2008) Electrial of femtomolar DNA via gold-nanoparticles enhancement in carbon-nanotube-network field-effect transistors. Adv Mater 20:2389–2393Google Scholar
  19. 19.
    Rothrock A, Donkers R, Schoenfisch M (2005) Synthesis of nitric oxide- releasing gold nanoparticles. J Am Chem Soc 127:9362–9363Google Scholar
  20. 20.
    Bowman M, Ballard T, Ackerson C, Feldheim D, Margolis D, Melander C (2008) Inhibition of HIV fusion with multivalent gold nanoparticles. J Am Chem Soc 130:6896–6897Google Scholar
  21. 21.
    Debouttiere P, Roux S, Vocanson F, Billotey C, Favre-Reguillion A, Lin Y, Pellet-Rostaing S, Lamartine R, Perriat P, Tillement O (2006) Design of gold nanoparticles for magnetic resonance imaging. Adv Funct Mater 16:2330–2339Google Scholar
  22. 22.
    Kim J, Osterloh F (2006) Planar gold nanoparticles clusters as microscale mirrors. J Am Chem Soc 128:3868–3869Google Scholar
  23. 23.
    Cui H, Feng Y, Ren W, Zen T, Lv H, Pan Y (2009) Strategies of large scale synthesis of monodisperse nanoparticles. Recent Patents Nanotechnol 3:32–41Google Scholar
  24. 24.
    Krishnamurthy NB, Barasamalakar BN, Liny P, Dinesh R (2012) Green synthesis of gold nanoparticles using Tagetes erecta L. (mari gold) flower extract and evaluation of their antimicrobial activities. Int J Pharma Bio Sci 3(1):212–221Google Scholar
  25. 25.
    Daniel M, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346Google Scholar
  26. 26.
    Zhang Y, Chu W, Foroushani AD, Wang H, Li D, Liu J (2014) New gold nanostructure for sensor application: a review. Material 7:5169–5201Google Scholar
  27. 27.
    Kang KA, Wang J, Jasinski JB, Achilefu S (2011) Fluorescence manipulation by gold nanoparticles: from complete quenching to extensive enhancement. J Nanotechnol 9:16Google Scholar
  28. 28.
    Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed 6:257–262Google Scholar
  29. 29.
    Mohanpuria P, Rana N, Yadav S (2008) Biosynthesis of nanoparticles: technology concepts and future applications. J Nanopart Res 10:507–517Google Scholar
  30. 30.
    Sinha S, Pan I, Chanda P, Sen SK (2009) Nanoparticles fabrication using ambient biological resources. J Appl Biosci 19:1113–1130Google Scholar
  31. 31.
    Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their application. J Chem Technol Biotechnol 84:151–157Google Scholar
  32. 32.
    Rajathi FAA, Parthiban C, Kumar VG, Anantharaman P (2012) Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kutzing). Spectrochim Acta Part A Mol Biomol Spectrosc 99:166–173Google Scholar
  33. 33.
    Kushnerova TV, Fomenko SE, Kushnerova NF, Sprygin VG, Lesnikova LN, Khotimchenko YS (2010) Antooxidant and membrane-protective properties of an extract from the brown alga Laminaria japonica. Russ J Marine Biol 36:390–395Google Scholar
  34. 34.
    Fujimoto K (1990) Antioxidant activity of algal extracts. Introduction to applied phycology. SPB Academic Publishing, The Hague 199–208Google Scholar
  35. 35.
    Xie J, Lee JY, Wang DIC, Ting YP (2007) High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C 111(45):16858–16865Google Scholar
  36. 36.
    Mishra A, Tripathy SK, Wahab R, Jeong SH, Hwang I, Yang YB, Kim YS (2011) Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effect against mouse mayo blast cancer C2C12 cells. J Appl Microbiol Biotechnol 92(3):617–630Google Scholar
  37. 37.
    He S, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulate. Biotechnol Prog 24(2):476–480Google Scholar
  38. 38.
    Gericke M, Pinches A (2006) Biological Synthesis of metal nanoparticles. Hydrometallurgy 83:132–140Google Scholar
  39. 39.
    Nangia Y, Wangoo N, Sharma S, Wu J, Dravid V (2009) Facial biosynthesis of phosphate capped gold nanoparticles by bacterial isolate Stenotrophomonas maltophili. J Appl Phys Lett 94:233901Google Scholar
  40. 40.
    Agnihotri M, Joshi S, Ravikumar A, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63:1231–1234Google Scholar
  41. 41.
    Du L, Jiang H, Xiaohua H, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5a and its application on direct electrochemistry of haemoglobin. Electrochem Commun 9:1165Google Scholar
  42. 42.
    Singh M, Kalaivani R, Manikandan S, Sangeetha N, Kumaraguru AK (2013) Facile green synthesis of variable metallic gold nanoparticle using Padinagymnospora, a brown marine macroalga. Appl Nanosci 3(2):145–151Google Scholar
  43. 43.
    Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179Google Scholar
  44. 44.
    Lirdprapamongkol K, Warangkana W, Suwicha S, Svasti J (2010) Eco-friendly synthesis of fucoidan-stabilized gold nanoparticles. Am J Appl Sci 7(8):1038–1042Google Scholar
  45. 45.
    Singaravelu G, Arockiyamari JS, Kumar V, Govindaraju K (2007) A novel extracellular biosynthesis of monodisperse gold nanoparticles using marine algae, Sargassumwightii greville. Colloid Surf B Biointerf 57:97–101Google Scholar
  46. 46.
    Vijayaraghavan K, Mahadevan A, Sathishkumar M, Pavagadhi S, Balasubramanian R (2011) Biosorption and subsequent bioreduction of trivalent aurum by a brown marine alga Turbinaria conoides. Chem Eng J 167:223–227Google Scholar
  47. 47.
    Ghodake G, Lee DS (2011) Biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria japonica. J Nanoelectron Optoelectron 6:1–4Google Scholar
  48. 48.
    Rajathi FAA, Parthiban C, Kumar GV, Anantharaman P (2012) Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum arginatum (kützing). Spectrochim Acta Part A 99:166–173Google Scholar
  49. 49.
    Ting YP, Teo WK, Soh CY (1995) Gold uptake by Chlorella vulgaris. J Appl Phycol 7:97–100Google Scholar
  50. 50.
    Lengket M, Fleet ME, Southam G (2006) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(1)- thiosulfate and gold (111)-chloride complexes. Langmuir 22:2780–2787Google Scholar
  51. 51.
    Naveen BE, Prakash S (2013) Biological synthesis of gold nanoparticles using algae Gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian J Pharm Clin Res 6(2):179–182Google Scholar
  52. 52.
    Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nano gold formation-a novel phenomenon. J Appl Phycol 21:145–152Google Scholar
  53. 53.
    Chakraborty N, Pal R, Ramaswami A, Nayak D, Lahiri S (2006) Diatom: a potential bio-accumulator of gold. J Radio Anal Nucl Chem 270:645–649Google Scholar
  54. 54.
    Nayak D, Nag M, Banerjee S, Pal R, Laska S, Lahiri S (2006) Preconcentration of Au in a green alga Rhizoglonium. J of Radio Anal Nucl Chem 268:337–340Google Scholar
  55. 55.
    Namvar F, Rahman HS, Mohamad R, Rasedee A, Yeap SK, Chartrand MS, Azizi S, Tahir PM (2015) Apoptosis induction in human leukemia cell lines by gold nanoparticles synthesized using the green biosynthetic approach. J Nanomater 642621Google Scholar
  56. 56.
    Li L, Zhang Z (2016) Biosynthesis of gold nanoparticles using Alga Pithophora oedogonia with their electrochemical performance for determining Carbendazim in soil. Int J Electrochem Sci 11:4550–4559Google Scholar
  57. 57.
    Lengke MF, Fleet ME, Southam G (2006) Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I)–thiosulfate and gold(III)–chloride complexes. Langmuir 22(6):2780–2787Google Scholar
  58. 58.
    Swaminathan S, Murugesan S, Damodarkumar S, Dhamotharan R, Bhuvaneshwari S (2011) Synthesis and characterization of gold nanoparticles from alga Acanthophora spicifera (VAHL) Boergesen. Int J Nanosci Nanotechnol 2:85–94Google Scholar
  59. 59.
    Oza G, Pandey S, Mewada A, Kalita G, Sharon M, Phata J, Ambernath W, Sharon M (2012) Facile biosynthesis of gold nanoparticles exploiting optimum pH and temperature of fresh water algae Chlorella pyrenoidusa. Adv Appl Sci Res 3:1405–1412Google Scholar
  60. 60.
    Dhas TS, Kumar VG, Abraham LS, Karthick V, Govindaraju K (2012) Sargassum myriocystum mediated biosynthesis of gold nanoparticles. Spectrochim Acta Part A 99:97–101Google Scholar
  61. 61.
    Rajathi FAA, Parthiban C, Kumar VG, Anantharaman P (2012) Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (Ku ¨tzing). Spectrochim Acta Part A 99:166–173Google Scholar
  62. 62.
    Ghodake G, Lee DS (2011) Biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria japonica. J Nanoelectron Optoelectron 6:268–271Google Scholar
  63. 63.
    Krishnamurthy NB, Barasamalakar BN, Liny P, Dinesh R (2012) Green synthesis of gold nanoparticles using Tagetes erecta L. Marigold flower extract evaluation of their antimicrobial activities. IJPBS 3:212–221Google Scholar
  64. 64.
    Stobie N, Duffy B, McCormack CJ, Hidalgo M, McHale P (2008) Prevention of Staphylococcus epidermisdis biofilm formation using a low temperature processed silver doped phenyl triethoxysilanesol gel coating. Biomaterials 29:963–969Google Scholar
  65. 65.
    Suqanya KS, Govindaraju K, Kumar VG, Das TS, Karthick V, Singaravelu G, Elanchezhiyan M (2015) Blue–green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against gram positive organisms. Mater Sci Eng C Mater Biol Appl 47:351–356Google Scholar
  66. 66.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346Google Scholar
  67. 67.
    Wu CC, Chen DH (2010) Facile green synthesis of gold nanoparticles with gum arabic as a stabilizing agent and reducing agent. Gold Bull 43:234–239Google Scholar
  68. 68.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer Verlag, Berlin, pp 13–201Google Scholar
  69. 69.
    Tiwari PM, Vig K, Dennis VA, Singh SR (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1:31–63Google Scholar
  70. 70.
    Selvin J, Huxley AJ, Lipton AP (2004) Immuno modulatory potential of marine secondary metabolites against bacterial diseases of shrimp. Aquaculture 230:241–248Google Scholar
  71. 71.
    Lipton AP, Jose JJ (2006) Anticoagulant and immune enhancing activities of marine macroalgae explored. Spectrum ICAR News 12:8–6Google Scholar
  72. 72.
    Selvin J, Lipton AP (2002) Development of a rapid mollusc foot adherence bioassay for detecting potent antifouling bioactive compounds. Curr Sci 83:735–737Google Scholar
  73. 73.
    South GR, Whittick A (1987) Introduction to phycology. Oxford press, London, pp 21–25Google Scholar
  74. 74.
    Kumar V, Fausto N, Abbas A (2003) Robbins & Cotran pathologic basis of disease. 7th Edn, Saundres, 914–917Google Scholar
  75. 75.
    Nabanita C, Ghosh T, Sinha S, Kausik C, Karmakar P, Bimalendu R (2010) Polysaccharides from Turbinaria conoides: structural features and antioxidant capacity. Food Chem 118:823–829Google Scholar
  76. 76.
    Shyamali S, Silva D, Kumar SN (1988) Carbohydrate constituents of the marine algae of Sri Lanka part III: Composition of the carbohydrates extracted from the brown seaweed Turbinaria conoides. J Natl Sci Council Sri Lanka 16:201–208Google Scholar
  77. 77.
    Vijayaraghavan GR, David S, Bermudez-Allende M, Sarwat H (2011) Imaging-guidedparenchymal liver biopsy: how we do it. J Clin Imaging Sci 1:30Google Scholar
  78. 78.
    Noruzi M, Zare D, Khoshnevisan K, Davoodi D (2011) Rapid green synthesis of gold nanoparticles using Rosa hybrid petal extract at room temperature. Spectrochimica Acta Part A 79:1461–1465Google Scholar
  79. 79.
    Raghunandan D, Basavaraja S, Mahesh B, Balaji S, Manjunath SY, Venkataraman A (2009) Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract. Nano Biotechnol 5:34–41Google Scholar
  80. 80.
    Rajeshkumar S, Malarkodi C, Gnanajobitha G, Paulkumar K, Vanaja M, Kannan C, Annadurai G (2013) Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostruct Chem 3(1):44Google Scholar
  81. 81.
    Venkatpurwar V (2011) Porphyran Capped Gold Nanoparticles as a Novel for Delivery of Anticancer Drugs: in Vitro Cytotoxicity Study. Int J Pharm 409:314–320Google Scholar
  82. 82.
    Kalabegishvili T, Kirkesali E, Frontasyeva MV, Pavlov SS, Zinicovscaia I, Faanhof A (2012) Synthesis of Gold nanoparticles by blue–green Algae Spirulina Platensis. Proceeding of the International Conference Nanomaterials: Application and Properties 1:2, 02NNBM09 (3 pp)Google Scholar
  83. 83.
    Kumar B, Smita K, Sanchez E, Guerra S, Cumbal L (2016) Ecofriendly ultrasound-assisted rapid synthesis of gold nanoparticles using Calothrix algae. Adv Nat Sci Nanosci Nanotechnol 7:2Google Scholar
  84. 84.
    Abdel-Rouf N, Al-Enazi NM, Ibraheem IBM (2017) Green biosynthesis of gold nanoparticles using Galaxaura elongate and characterization of their antibacterial activity. Arab J Chem 10(2):S3029–S3039Google Scholar
  85. 85.
    Isaac G, Renitta RE (2015) Brown Algae mediated synthesis, characterization of gold nanoparticles using Padina pavonica and their antibacterial activity against human pathogen. Int J Pharm Tech Res CODEN (USA) IJPRIF 8(9):31–40Google Scholar
  86. 86.
    Vijayan SR, Santhiyagu P, Singamuthu M, Kumari N, Jayaraman AR, Ethiraj K (2014) Synthesis and Characterization of silver and Gold nanoparticles using aqueous extract of Seaweed, Turbinaria conoides and their Antimicrofouling activity. Sci World J 10:938272Google Scholar
  87. 87.
    Shakibaie M, Forootanfar H, Mollazadeh-Moghaddam K, Bagherzadeh Z, Nafissi-Varcheh N, Shahverdi AR, Faramarzi MA (2010) Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica. Biotechnol Appl Biochem 57(2):71–75Google Scholar
  88. 88.
    Annamalai J, Nallamuthu T (2015) Characterization of biosynthesis gold nanoparticles from aqueous extract of Chlorella vulgaris and their antipathogenic properties. Appl Nanosci 5:603–607Google Scholar
  89. 89.
    Mmola M, Roes-Hill ML, Durrell K, Bolton JJ, Sibuyi N, Meyer ME, Beukes DR, Antunes E (2016) Enhanced antimicrobial and anticamcer activity of silver and gold nanoparticles synthesized using Sargassum incisifolium aqueous extracts. Molecules 21(12):1633Google Scholar
  90. 90.
    Parial P, Patra HK, Dasgupta AKP, Pal P (2012) Screening of different algae for synthesis of gold nanoparticles. Eur J Phycol 47:22–29Google Scholar
  91. 91.
    Senapati S, Syed A, Moeez S, Ahmad A (2012) Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater Lett 79:116–118Google Scholar
  92. 92.
    Singh M, Kalaivani R, Manikandan S, Saneetha N, Kumaraguru AK (2013) Facile green synthesis of variable metallic gold nanoparticles using Padina gymnospors, a brown marine macroalga. Appl Nanosci 3:145–151Google Scholar
  93. 93.
    Mata YN, Torres E, Blazquez ML, Ballester A, Gonzalez F, Munoz JA (2009) Gold (III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166:612–618Google Scholar
  94. 94.
    Gonzalez-Ballesteros N, Prado-Lopez S, Rodriguez-Gonzalez JB, Lastra M, Rodriguez-Arguelles MC (2017) Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: its activity in colon cancer cells. Colloids Surf B Biointerfaces 153:190–198Google Scholar
  95. 95.
    Rojas-Perez A, Adorno L, Cordero M, Ruiz A, Mercado-Diaz Z, Rodriguez A, Betancourt L, Velez C, Feliciano I, Cabrea C, Diaz Vazquez LM (2015) Biosynthesis of gold nanoparticles using Osmudaria obtusiloba extract and their potential use in optical sensing application. Austin J Biosens Bioelectron 1(5):1–9Google Scholar
  96. 96.
    Roychoudhary P, Pal R (2014) Spirogya submaxima-A green Alga for nanogold production. J Algal Biomass Utln 5(1):15–19Google Scholar
  97. 97.
    Venkatesan J, Manivasagan P, Kim SK, Kirthi AV, Marimuthu S, Rahuman AA (2014) Marine algae-mediated synthesis of gold nanoparticles using a novel Ecklonia cava. Bioprocess Biosyst Eng 37(8):1591–1597Google Scholar
  98. 98.
    Rajeshkumar S, Kumar SV, Malaakodi C, Vanaja M, Paulkumar K, Annadurai G (2017) Optimized Synthesis of Gold Nanoparticles using Green Chemical Process and Its In vitro Anticancer Activity Against HepG2 and A549 Cell Lines, Mechanics, Materials Science & Engineering, ISSN 2412–5954Google Scholar
  99. 99.
    Rajasulochana P, Dhamotharan R, Murugakoothan P, Murugesan S, Krishnamoorth P (2010) Biosynthesis and characterization of gold nanoparticles using the Alga Kappaphycus alvarezii. Int J Nanosci 09(5):511–516Google Scholar
  100. 100.
    Ashokkumar T, Vijayaraghavan K (2016) Brown seaweed-mediated biosynthesis of gold nanoparticles. J of Environ Biotechnol Res 2:45–50Google Scholar
  101. 101.
    Kumari VS, Sundari GS, Basha SK (2014) Facile green synthesis of gold nanoparticles withgreat catalytic activity using Ulva fasciata. Lett Appl Nano Bio Sci 3:124–129Google Scholar
  102. 102.
    Dhas S, Kumar G, Stanley SA, Govindaraju K (2012) Sargassum myriocystum mediated biosynthesis of gold nanoparticles. Spectrochim Acta part A Mol Biomol Spectrosc 99C:97–101Google Scholar
  103. 103.
    Singh M, Kumar M, Manikandan S, Chandrasekaran N, Mukherjee A, Kumaraguru AK (2014) Drug delivery system for controlled cancer therapy using physico-chemically stabilized bioconjugated gold nanoparticles synthesized from marine macroalgae Padina gymnospora. J Nanomed Nanotechol S5:009Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, School of Basic SciencesJaipur National UniversityJaipurIndia
  2. 2.Department of BotanyAligarh Muslim UniversityAligarhIndia
  3. 3.Department of ChemistryAligarh Muslim UniversityAligarhIndia
  4. 4.School of Chemical EngineeringYeungnam UniversityGyeongsan-siSouth Korea
  5. 5.Chemical Sciences, Faculty of ScienceUniversiti BruneiGadongBrunei

Personalised recommendations