Advertisement

Bioprocess and Biosystems Engineering

, Volume 41, Issue 11, pp 1707–1716 | Cite as

Simultaneous production of single cell oil and fumaric acid by a newly isolated yeast Aureobasidium pullulans var. aubasidani DH177

  • Guangyuan Wang
  • Tingting Bai
  • Zhengang Miao
  • Weiguang Ning
  • Wenxing Liang
Research Paper
  • 44 Downloads

Abstract

Microbial oils can be used for biodiesel production and fumaric acid (FA) is widely used in the food and chemical industries. In this study, the production of lipids and FA by Aureobasidium pullulans var. aubasidani DH177 was investigated. A high initial carbon/nitrogen ratio in the medium promoted the accumulation of lipids and FA. When the medium contained 12.0% glucose and 0.2% NH4NO3, the yeast strain DH177 accumulated 64.7% (w/w) oil in its cells, 22.4 g/l cell biomass and 32.3 g/l FA in a 5-L batch fermentation. The maximum yields of oil and FA were 0.12 g/g and 0.27 g/g of consumed sugar, respectively. The compositions of the produced fatty acids were C14:0 (0.6%), C16:0 (24.9%), C16:1 (4.4%), C18:0 (2.1%), C18:1 (57.6%), and C18:2 (10.2%). Biodiesel obtained from the extracted oil burned well. This study provides the pioneering utilization of the yeast strain DH177 for the integrated production of oil and FA.

Keywords

Single cell oil Fumaric acid Aureobasidium pullulans var. aubasidani Integrated production Biodiesel 

Notes

Acknowledgements

This research was supported by the Research Foundation for Advanced Talents of Qingdao Agricultural University (Grant No. 6631114335) and Taishan Scholar Construction Foundation of Shandong Province (Grant No. 6631114314).

Supplementary material

449_2018_1994_MOESM1_ESM.doc (639 kb)
Supplementary material 1 (DOC 639 KB)

References

  1. 1.
    Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundymills K (2014) Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv 32:1336–1360CrossRefPubMedGoogle Scholar
  2. 2.
    Wang G, Guo L, Liang W, Chi Z, Liu L (2017) Systematic analysis of the lysine acetylome reveals diverse functions of lysine acetylation in the oleaginous yeast Yarrowia lipolytica. AMB Express 7:94CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Anschau A, Franco TT (2015) Cell mass energetic yields of fed-batch culture by Lipomyces starkeyi. Bioprocess Biosyst Eng 38:1517–1525CrossRefPubMedGoogle Scholar
  4. 4.
    Helwani Z, Othman MR, Aziz N, Fernando WJN, Kim J (2009) Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Process Technol 90:1502–1514CrossRefGoogle Scholar
  5. 5.
    Zhao X, Peng F, Du W, Liu C, Liu D (2012) Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess Biosyst Eng 35:993–1004CrossRefPubMedGoogle Scholar
  6. 6.
    Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51CrossRefGoogle Scholar
  7. 7.
    Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90:1219–1227CrossRefPubMedGoogle Scholar
  8. 8.
    Engel CAR, Straathof AJJ, Zijlmans TW, Van Gulik WM, Der Wielen LAMV (2008) Fumaric acid production by fermentation. Appl Microbiol Biotechnol 78:379–389CrossRefGoogle Scholar
  9. 9.
    Chen X, Wu J, Song W, Zhang L, Wang H, Liu L (2015) Fumaric acid production by Torulopsis glabrata: engineering the urea cycle and the purine nucleotide cycle. Biotechnol Bioeng 112:156–167CrossRefPubMedGoogle Scholar
  10. 10.
    Xu Q, Liu Y, Li S, Jiang L, Huang H, Wen J (2016) Transcriptome analysis of Rhizopus oryzae in response to xylose during fumaric acid production. Bioprocess Biosyst Eng 39:1267–1280CrossRefPubMedGoogle Scholar
  11. 11.
    Xu Q, Li S, Huang H, Wen J (2012) Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol Adv 30:1685–1696CrossRefPubMedGoogle Scholar
  12. 12.
    Cao N, Du J, Gong CS, Tsao GT (1996) Simultaneous production and recovery of fumaric acid from immobilized Rhizopus oryzae with a rotary biofilm contactor and an adsorption column. Appl Environ Microbiol 62:2926–2931PubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu Y, Lv C, Xu Q, Li S, Huang H, Ouyang P (2015) Enhanced acid tolerance of Rhizopus oryzae during fumaric acid production. Bioprocess Biosyst Eng 38:323–328CrossRefPubMedGoogle Scholar
  14. 14.
    Zhou Y, Du J, Tsao G (2002) Comparison of fumaric acid production by Rhizopus oryzae using different neutralizing agents. Bioprocess Biosyst Eng 25:179–181CrossRefPubMedGoogle Scholar
  15. 15.
    Kenealy WR, Zaady E, Du Preez JC, Stieglitz B, Goldberg I (1986) Biochemical aspects of fumaric acid accumulation by Rhizopus arrhizus. Appl Environ Microbiol 52:128–133PubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhou Z, Du G, Hua Z, Zhou J, Chen J (2011) Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation. Bioresour Technol 102:9345–9349CrossRefPubMedGoogle Scholar
  17. 17.
    Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051CrossRefGoogle Scholar
  18. 18.
    Wang G, Chi Z, Song B, Wang Z, Chi Z (2012) High level lipid production by a novel inulinase-producing yeast Pichia guilliermondii Pcla22. Bioresour Technol 124:77–82CrossRefPubMedGoogle Scholar
  19. 19.
    Wang G, Lin L, Liang W (2018) Single cell oil production from hydrolysates of inulin by a newly isolated yeast Papiliotrema laurentii AM113 for biodiesel making. Appl Biochem Biotechnol 184:168–181CrossRefPubMedGoogle Scholar
  20. 20.
    Han M, Xu ZY, Du C, Qian H, Zhang WG (2016) Effects of nitrogen on the lipid and carotenoid accumulation of oleaginous yeast Sporidiobolus pararoseus. Bioprocess Biosyst Eng 39:1425–1433CrossRefPubMedGoogle Scholar
  21. 21.
    Chi Z, Liu G, Liu C, Chi Z (2016) Poly(β-l-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings. Appl Microbiol Biotechnol 100:3841–3851CrossRefGoogle Scholar
  22. 22.
    Zelle RM, de Hulster E, Kloezen W, Pronk JT, van Maris AJ (2010) Key process conditions for production of C(4) dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol 76:744–750CrossRefGoogle Scholar
  23. 23.
    Romano AH, Bright MM, Scott WE (1967) Mechanism of fumaric acid accumulation in Rhizopus nigricans. J Bacteriol 93:600–604PubMedPubMedCentralGoogle Scholar
  24. 24.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509Google Scholar
  25. 25.
    Zhang F, Wang ZP, Chi Z, Raoufi Z, Abdollahi S, Chi ZM (2013) The changes in Tps1 activity, trehalose content and expression of TPS1 gene in the psychrotolerant yeast Guehomyces pullulans 17–1 grown at different temperatures. Extremophiles 17:241–249CrossRefPubMedGoogle Scholar
  26. 26.
    Kanarek L, Hill RL (1964) The preparation and characterization of fumarase from swine heart muscle. J Biol Chem 239:4202–4206PubMedGoogle Scholar
  27. 27.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  28. 28.
    Spiro RG (1966) Analysis of sugars found in glycoproteins. Methods Enzymol 8:3–26CrossRefGoogle Scholar
  29. 29.
    Wang CL, Yang L, Xin FH, Liu YY, Chi ZM (2014) Evaluation of single cell oil from Aureobasidium pullulans var. melanogenum P10 isolated from mangrove ecosystems for biodiesel production. Process Biochem 49:725–731CrossRefGoogle Scholar
  30. 30.
    Tanimura A, Takashima M, Sugita T, Endoh R, Kikukawa M, Yamaguchi S, Sakuradani E, Ogawa J, Shima J (2014) Selection of oleaginous yeasts with high lipid productivity for practical biodiesel production. Bioresour Technol 153:230–235CrossRefPubMedGoogle Scholar
  31. 31.
    Sajjadi B, Raman AAA, Arandiyan H (2016) A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renew Sust Energ Rev 63:62–92CrossRefGoogle Scholar
  32. 32.
    Wang YK, Chi Z, Zhou HX, Liu GL, Chi ZM (2015) Enhanced production of Ca2+-polymalate (PMA) with high molecular mass by Aureobasidium pullulans var. pullulans MCW. Microb Cell Fact 14:115CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sitepu IR, Ignatia L, Franz AK, Wong DM, Faulina SA, Tsui M, Kanti A, Boundymills K (2012) An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. J Microbiol Methods 91:321–328CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zweytick D, Athenstaedt K, Daum G (2000) Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta 1469:101–120CrossRefPubMedGoogle Scholar
  35. 35.
    Leber R, Zinser E, Paltauf F, Daum G, Zellnig G (1994) Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast 10:1421–1428CrossRefPubMedGoogle Scholar
  36. 36.
    Wang G, Li D, Miao Z, Zhang S, Liang W, Liu L (2018) Comparative transcriptome analysis reveals multiple functions for Mhy1p in lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica. Biochim Biophys Acta 1863:81–90CrossRefGoogle Scholar
  37. 37.
    Zalar P, Gostincar C, De Hoog GS, Ursic V, Sudhadham M, Gundecimerman N (2008) Redefinition of Aureobasidium pullulans and its varieties. Stud Mycol 61:21–38CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Taskin M, Ortucu S, Aydogan MN, Arslan NP (2016) Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renew Energ 99:198–204CrossRefGoogle Scholar
  39. 39.
    Yen HW, Liao YT, Liu YX (2015) The growth of oleaginous Rhodotorula glutinis in an airlift bioreactor on crude glycerol through a non-sterile fermentation process. Bioprocess Biosyst Eng 38:1541–1546CrossRefPubMedGoogle Scholar
  40. 40.
    Zhao X, Kong X, Hua Y, Feng B, Zhao ZK (2008) Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lipid Sci Technol 110:405–412CrossRefGoogle Scholar
  41. 41.
    Wang GY, Zhang Y, Chi Z, Liu GL, Wang ZP, Chi ZM (2015) Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Appl Microbiol Biotechnol 99:1637–1645CrossRefPubMedGoogle Scholar
  42. 42.
    Peleg Y, Battat E, Scrutton MC, Goldberg I (1989) Isoenzyme pattern and subcellular localisation of enzymes involved in fumaric acid accumulation by Rhizopus oryzae. Appl Microbiol Biotechnol 32:334–339CrossRefGoogle Scholar
  43. 43.
    Chi Z, Wang Z, Wang G, Khan I, Chi Z (2016) Microbial biosynthesis and secretion of l-malic acid and its applications. Crit Rev Biotechnol 36:99–107CrossRefPubMedGoogle Scholar
  44. 44.
    Straathof AJJ, Gulik WMV (2012) Production of fumaric acid by fermentation. In: Wang X, Chen J, Quinn P (eds) Reprogramming microbial metabolic pathways. Springer Netherlands, Dordrecht, pp 225–240CrossRefGoogle Scholar
  45. 45.
    Tan MJ, Chen X, Wang YK, Liu GL, Chi ZM (2016) Enhanced citric acid production by a yeast Yarrowia lipolytica over-expressing a pyruvate carboxylase gene. Bioprocess Biosyst Eng 39:1289–1296CrossRefPubMedGoogle Scholar
  46. 46.
    Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev 16:143–169CrossRefGoogle Scholar
  47. 47.
    Zou X, Zhou Y, Yang S (2013) Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnol Bioeng 110:2105–2113CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Life Science, Shandong Province Key Laboratory of Applied MycologyQingdao Agricultural UniversityQingdaoChina
  2. 2.College of Plant Health and Medicine, The Key Laboratory of Integrated Crop Pest Management of Shandong ProvinceQingdao Agricultural UniversityQingdaoChina
  3. 3.Qingdao Agricultural Science and Technology Service CenterQingdaoChina

Personalised recommendations