Advertisement

Bioprocess and Biosystems Engineering

, Volume 41, Issue 11, pp 1651–1663 | Cite as

Resolving mismatches in the flexible production of ethanol and butanol from eucalyptus wood with vacuum fermentation

  • Daniel de Castro Assumpção
  • Elmer Alberto Ccopa Rivera
  • Laura Plazas Tovar
  • Thaddeus Chukwuemeka Ezeji
  • Rubens Maciel Filho
  • Adriano Pinto Mariano
Research Paper

Abstract

In flexible ethanol-butanol plants, low tolerance to butanol by solventogenic clostridia (and resulting dilute fermentation) results in considerable number of empty fermentors whenever production focuses on ethanol. This research identified scenarios in which vacuum fermentation (in-situ vacuum recovery) may be applied to solve this problem. We conducted ethanol (Saccharomyces cerevisiae) and ABE (Clostridium beijerinckii NCIMB 8052) batch vacuum fermentations of eucalyptus hydrolysates according to the distribution of sugars in a flexible plant. Based on the experiments and performance targets set for the ABE fermentation, we simulated a flexible plant that processes 1000 dry t eucalyptus/day using pretreatment and enzymatic hydrolysis steps with moderate solids loading (15% w/w). The simulation showed that the number of fermentation tanks can decrease by 62% (eliminating 10 idle tanks, 3748 m3 each) by applying vacuum recovery only to the fermentation of mixed (cellulose + hemicellulose) hydrolysates to ABE. We concluded that this configuration can result in savings of up to 2 MMUS$/year in comparison with flexible plants having only conventional batch fermentors, and additional cost savings are expected from reduced wastewater footprint.

Keywords

Process flexibility Eucalyptus ethanol Eucalyptus butanol In-situ product recovery Productivity 

Notes

Acknowledgements

This research was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grant numbers 2015/07097-5 BIOEN Program and 2016/01785-0), the FAPESP-Ohio State University collaborative research program (mobility Grant number 2015/50243-2), UNICAMP (scholarship number 38615 PAPDIC-FAEPEX), the South-Central Region Sun Grant Program (from the USDA-NIFA), and the USDA National Institute of Food and Agriculture (NIFA) Hatch Project OHO01333. We thank Fibria and Francisco Maugeri Filho (FEA/UNICAMP) for generously providing eucalyptus wood chips and the yeast used in this work, respectively.

References

  1. 1.
    Mariano AP (2015) How Brazilian pulp mills will look like in the future? O Papel 76:55–61Google Scholar
  2. 2.
    Pereira GCQ, Braz DS, Hamaguchi M, Ezeji TC, Maciel Filho R, Mariano AP (2018) Process design and economics of a flexible ethanol–butanol plant annexed to a eucalyptus kraft pulp mill. Biores Technol 250:345–354CrossRefGoogle Scholar
  3. 3.
    Vane LM (2008) Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod Biorefin 2:553–588CrossRefGoogle Scholar
  4. 4.
    Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol–dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Technical report, NREL/TP-5100-47764Google Scholar
  5. 5.
    Mariano AP, Maciel Filho R (2012) Improvements in biobutanol fermentation and their impacts on distillation energy consumption and wastewater generation. Bioenergy Res 5:504–514CrossRefGoogle Scholar
  6. 6.
    Mariano AP, Qureshi N, Maciel Filho R, Ezeji TC (2011) Bioproduction of butanol in bioreactors: new insights from simultaneous in situ butanol recovery to eliminate product toxicity. Biotechnol Bioeng 108:1757–1765CrossRefPubMedGoogle Scholar
  7. 7.
    Huang H, Singh V, Qureshi N (2015) Butanol production from food waste: a novel process for producing sustainable energy and reducing environmental pollution. Biotechnol Biofuels 8:147CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hyman D, Sluiter A, Crocker D, Johnson D, Sluiter J, Black S et al (2008) Determination of acid soluble lignin concentration curve by UV–Vis Spectroscopy. Laboratory analytical procedure: technical report: NREL/TP-510-42617 National Renewable Energy Laboratory, Golden, Colorado, USAGoogle Scholar
  9. 9.
    Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of extractives in biomass. Laboratory analytical procedure: technical report: NREL/TP-510-42619 National Renewable Energy Laboratory, Golden, Colorado, USAGoogle Scholar
  10. 10.
    Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C et al (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. Laboratory analytical procedure: technical report: NREL/TP-510-42621 National Renewable Energy Laboratory, Golden, Colorado, USAGoogle Scholar
  11. 11.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of ash in biomass. Laboratory analytical procedure: technical report NREL/TP-510-42622. National Renewable Energy Laboratory, Golden, Colorado, USAGoogle Scholar
  12. 12.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D et al (2012) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure: technical report NREL/TP-510-42618. National Renewable Energy Laboratory, Golden, Colorado, USAGoogle Scholar
  13. 13.
    Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA (2010) Production of butanol (a biofuel) from agricultural residues: part I—use of barley straw hydrolysate. Biomass Bioenergy 34(4):559–565CrossRefGoogle Scholar
  14. 14.
    Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268CrossRefGoogle Scholar
  15. 15.
    Ramos de Andrade R, Cândida Rabelo S, Maugeri Filho F, Maciel Filho R, Carvalho da Costa A (2013) Evaluation of the alcoholic fermentation kinetics of enzymatic hydrolysates from sugarcane bagasse (Saccharum officinarum L.). J Chem Technol Biotechnol 88:1049–1057CrossRefGoogle Scholar
  16. 16.
    Mariano AP, Qureshi HP, Maciel Filho R, Ezeji TC (2012) Assessment of in situ butanol recovery by vacuum during acetone butanol ethanol (ABE) fermentation. J Chem Technol Biotechnol 87:334–340CrossRefGoogle Scholar
  17. 17.
    Wang Y, Li X, Milne CB, Janssen H, Lin W, Phan G, Hu H, Jin Y-S, Price ND, Blaschek HP (2013) Development of a gene knockout system using mobile group II introns (targetron) and genetic disruption of acid production pathways in Clostridium beijerinckii. Appl Environ Microbiol 79:5853–5863CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ujor V, Bharathidasan AK, Cornish K, Ezeji TC (2014) Evaluation of industrial dairy waste (milk dust powder) for acetone–butanol–ethanol production by solventogenic Clostridium species. SpringerPlus 3:387CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zheng J, Tashiro Y, Zhao T, Wang Q, Sakai K, Sonomoto K (2017) Enhancement of acetone–butanol–ethanol fermentation from eucalyptus hydrolysate with optimized nutrient supplementation through statistical experimental designs. Renew Energy 113:580–586CrossRefGoogle Scholar
  20. 20.
    Mariano AP, Keshtkar MJ, Atala DIP, Maugeri Filho F, Wolf Maciel MR, Maciel Filho R, Stuart P (2011) Energy requirements for butanol recovery using the flash fermentation technology. Energy Fuels 25:2347–2355CrossRefGoogle Scholar
  21. 21.
    Mariano AP, Maciel Filho R, Ezeji TC (2012) Energy requirements during butanol production and in situ recovery by cyclic vacuum. Renew Energy 47:183–187CrossRefGoogle Scholar
  22. 22.
    Pereira LG, Dias MOS, Mariano AP, Maciel Filho R, Bonomi A (2015) Economic and environmental assessment of n-butanol production in an integrated first and second generation sugarcane biorefinery: fermentative versus catalytic routes. Appl Energy 160:120–131CrossRefGoogle Scholar
  23. 23.
    CEPEA (2017) Center for Advanced Studies on Applied Economics. http://www.cepea.esalq.usp.br. Accessed 15 Dec 2017
  24. 24.
    MDIC (2017) System information analysis of foreign trade—butanol and acetone prices. http://comexstat.mdic.gov.br/en/home. Accessed 15 Dec 2017
  25. 25.
    Kazi FK, Fortman J, Anex R, Kothandaraman G, Hsu D, Aden A, Dutta A (2010) Techno-Economic analysis of biochemical scenarios for production of cellulosic ethanol. Technical report, NREL/TP-6A2-46588Google Scholar
  26. 26.
    Cho DH, Lee YJ, Um Y, Sang B-I, Kim YH (2009) Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Appl Microbiol Biotechnol 83:1035–1043CrossRefPubMedGoogle Scholar
  27. 27.
    Richmond C, Ujor V, Ezeji TC (2012) Impact of syringaldehyde on the growth of Clostridium beijerinckii NCIMB 8052 and butanol production. Biotech 2:159–167Google Scholar
  28. 28.
    Zhang WL, Liu ZY, Liu Z, Li FL (2012) Butanol production from corncob residue using Clostridium beijerinckii NCIMB 8052. Lett Appl Microbiol 55:240–246CrossRefPubMedGoogle Scholar
  29. 29.
    Lee S, Lee JH, Mitchell RJ (2015) Analysis of Clostridium beijerinckii NCIMB 8052’s transcriptional response to ferulic acid and its application to enhance the strain tolerance. Biotechnol Biofuels 8:68CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ujor V, Agu CV, Gopalan V, Ezeji TC (2015) Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone–butanol–ethanol (ABE) fermentation. Appl Microbiol Biotechnol 99:3729–3740CrossRefPubMedGoogle Scholar
  31. 31.
    Xin F, Wu Y-R, He J (2014) Simultaneous fermentation of glucose and xylose to butanol by Clostridium sp. strain BOH3. Appl Environ Microbiol 80:4771–4778CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Qureshi N, Blaschek HP (2000) Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation. Appl Biochem Biotechnol 84–86:225–235CrossRefPubMedGoogle Scholar
  33. 33.
    Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP (2008) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Biores Technol 99:5915–5922CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Daniel de Castro Assumpção
    • 1
  • Elmer Alberto Ccopa Rivera
    • 1
    • 2
  • Laura Plazas Tovar
    • 3
  • Thaddeus Chukwuemeka Ezeji
    • 2
  • Rubens Maciel Filho
    • 1
  • Adriano Pinto Mariano
    • 1
  1. 1.Laboratory of Optimization, Design, and Advanced Control (LOPCA), School of Chemical EngineeringUniversity of Campinas (UNICAMP)CampinasBrazil
  2. 2.Department of Animal Sciences, Ohio State Agricultural Research and Development CenterThe Ohio State UniversityWoosterUSA
  3. 3.Department of Chemical EngineeringFederal University of Santa Maria (UFSM)Santa MariaBrazil

Personalised recommendations