Advertisement

Bioprocess and Biosystems Engineering

, Volume 41, Issue 10, pp 1461–1470 | Cite as

Bio-succinic acid production from coffee husk treated with thermochemical and fungal hydrolysis

  • Wubliker Dessie
  • Junru Zhu
  • Fengxue Xin
  • Wenming Zhang
  • Youming Jiang
  • Hao Wu
  • Jiangfeng Ma
  • Min JiangEmail author
Research Paper

Abstract

Coffee husk (CH), a waste obtained from processing of coffee cherries via dry method, causes serious environmental problems. In this study, strategies were designed to utilize CH for succinic acid (SA) production. Three different CH hydrolysis methods: thermal, thermochemical and crude enzymes obtained by solid state fermentation of Aspergillus niger and Trichoderma reesei, were evaluated to generate fermentable feedstock for SA production using Actinobacillus succinogenes. The feasibility of these pretreatment methods was investigated. Accordingly, thermochemical hydrolysis using H2SO4 at 121 °C for 30 min, appeared the most effective method for CH hydrolysis, producing 24.4 g/L of reducing sugars (RS). Finally, 19.3 g/L of SA with yield and productivity of 0.95 g SA/g RS and 0.54 g/L/h, respectively, were obtained using CH hydrolysate. The current study revealed an alternative way of utilization coffee waste for value addition while mitigating environmental problems caused by its disposal.

Keywords

Coffee husk Succinic acid Actinobacillus succinogenes Hydrolysis Pretreatment 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21706125, 21727818, 21706124, 31700092), the Key Science and Technology Project of Jiangsu Province (BE2016389), the Project of State Key Laboratory of Materials-Oriented Chemical Engineering (KL16-08), and Top-notch Academic Programs Project of Jiangsu Higher Education Institutions PPZY2015B155, TAPP.

References

  1. 1.
    Mussatto SI, Machado EMS, Martins S, Teixeira JA (2011) Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol 4:661–672CrossRefGoogle Scholar
  2. 2.
    Oliveira LS, Franca AS (2015) Chap. 31—an overview of the potential uses for coffee husks A2. In: Preedy VR (ed) Coffee in Health and Disease Prevention. Academic Press, San DiegoGoogle Scholar
  3. 3.
    Bakker RRC (2013) Availability of lignocellulosic feedstocks for lactic acid production—feedstock availability, lactic acid production potential and selection criteria. UR Food and Biobased Research, WageningGoogle Scholar
  4. 4.
    Shemekite F, Gomez-Brandon M, Franke-Whittle IH, Praehauser B, Insam H, Assefa F (2014) Coffee husk composting: an investigation of the process using molecular and non-molecular tools. Waste Manag 34:642–652CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Franca AS, Oliveira LS (2009) Coffee processing solid wastes: current uses and future perspectives. In: Geoffrey SA, Pablo A (eds) Agricultural Wastes. Nova Science Publishers, New York, pp 155–189Google Scholar
  6. 6.
    Pandey A, Soccol CR, Nigam P, Brand D, Mohan R, Roussos S (2000) Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem Eng J 6:153–162CrossRefPubMedGoogle Scholar
  7. 7.
    Woiciechowski AL, Pandey A, Machado CMM, Cardoso EB, Soccol CR (2000) Hydrolysis of coffee husk: process optimization to recover its fermentable sugar. In: Sera T, Soccol CR, Pandey A, Roussos S (eds) Coffee biotechnology and quality: Proceedings of the 3rd international seminar on biotechnology in the coffee agro-industry, Londrina, Brazil. Springer Netherlands, DordrechtGoogle Scholar
  8. 8.
    McKinlay JB, Laivenieks M, Schindler BD, McKinlay AA, Siddaramappa S, Challacombe JF, Lowry SR, Clum A, Lapidus AL, Burkhart KB, Harkins V, Vieille C (2010) A genomic perspective on the potential of Actinobacillus succinogenes for industrial succinate production. BMC Genom 11:680–695CrossRefGoogle Scholar
  9. 9.
    Guettler MV, Rumler D, Jain MK (1999) Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int J Syst Bacteriol 49(Pt 1):207–216CrossRefPubMedGoogle Scholar
  10. 10.
    Adsul MG, Singhvi MS, Gaikaiwari SA, Gokhale DV (2011) Development of biocatalysts for production of commodity chemicals from lignocellulosic biomass. Bioresour Technol 102:4304–4312CrossRefPubMedGoogle Scholar
  11. 11.
    Jiang M, Dai W, Xi Y, Wu M, Kong X, Ma J, Zhang M, Chen K, Wei P (2014) Succinic acid production from sucrose by Actinobacillus succinogenes NJ113. Bioresour Technol 153:327–332CrossRefPubMedGoogle Scholar
  12. 12.
    Kim P, Laivenieks M, McKinlay J, Vieille C, Gregory Zeikus J (2004) Construction of a shuttle vector for the overexpression of recombinant proteins in Actinobacillus succinogenes. Plasmid 51:108–115CrossRefPubMedGoogle Scholar
  13. 13.
    Jiang M, Xu R, Xi YL, Zhang JH, Dai WY, Wan YJ, Chen KQ, Wei P (2013) Succinic acid production from cellobiose by Actinobacillus succinogenes. Bioresour Technol 135:469–474CrossRefPubMedGoogle Scholar
  14. 14.
    Chen K, Jiang M, Wei P, Yao J, Wu H (2010) Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes. Appl Biochem Biotechnol 160:477–485CrossRefPubMedGoogle Scholar
  15. 15.
    Lie S (1973) The EBC-ninhydrin method for determination of free alpha amino nitrogen. J Inst Brew 79:37–41CrossRefGoogle Scholar
  16. 16.
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  17. 17.
    Pleissner D, Neu AK, Mehlmann K, Schneider R, Puerta-Quintero GI, Venus J (2016) Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresour Technol 218:167–173CrossRefPubMedGoogle Scholar
  18. 18.
    Orzua MC, Mussatto SI, Contreras-Esquivel JC, Rodriguez R, de la Garza H, Teixeira JA, Aguilar CN (2009) Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Ind Crops Prod 30:24–27CrossRefGoogle Scholar
  19. 19.
    Esterbauer H, Steiner W, Labudova I, Hermann A, Hayn M (1991) Production of Trichoderma cellulase in laboratory and pilot scale. Bioresour Technol 36:51–65CrossRefGoogle Scholar
  20. 20.
    Brand D, Pandey A, Roussos S, Soccol CR (2000) Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system. Enzym Microb Technol 27:127–133CrossRefGoogle Scholar
  21. 21.
    Roussos S, de los Angeles Aquiáhuatl M, del R Trejo-Hernández, Gaime Perraud M, Favela I, Ramakrishna E, Raimbault M, Viniegra-González M G (1995) Biotechnological management of coffee pulp—isolation, screening, characterization, selection of caffeine-degrading fungi and natural microflora present in coffee pulp and husk. Appl Microbiol Biotechnol 42:756–762CrossRefGoogle Scholar
  22. 22.
    Iqtedar M, Nadeem M, Naeem H, Abdullah R, Naz S, Qurat ul Ain S, Kaleem A (2015) Bioconversion potential of Trichoderma viride HN1 cellulase for a lignocellulosic biomass Saccharum spontaneum. Nat Prod Res 29:1012–1019CrossRefPubMedGoogle Scholar
  23. 23.
    Chandel AK, Lakshmi Narasu M, Chandrasekhar G, Manikyam A, Venkateswar Rao L (2009) Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Bioresour Technol 100:2404–2410CrossRefPubMedGoogle Scholar
  24. 24.
    Shenoy D, Pai A, Vikas RK, Neeraja HS, Deeksha JS, Nayak C, Rao CV (2011) A study on bioethanol production from cashew apple pulp and coffee pulp waste. Biomass Bioenergy 35:4107–4111CrossRefGoogle Scholar
  25. 25.
    Dessie W, Zhang W, Xin F, Dong W, Zhang M, Ma J, Jiang M (2018) Succinic acid production from fruit and vegetable wastes hydrolyzed by on-site enzyme mixtures through solid state fermentation. Bioresour Technol 247:1177–1180CrossRefPubMedGoogle Scholar
  26. 26.
    Leung CCJ, Cheung ASY, Zhang AY-Z, Lam KF, Lin CSK (2012) Utilisation of waste bread for fermentative succinic acid production. Biochem Eng J 65:10–15CrossRefGoogle Scholar
  27. 27.
    Gunnarsson IB, Karakashev D, Angelidaki I (2014) Succinic acid production by fermentation of Jerusalem artichoke tuber hydrolysate with Actinobacillus succinogenes 130Z. Ind Crops Prod 62:125–129CrossRefGoogle Scholar
  28. 28.
    Chen K, Zhang H, Miao Y, Wei P, Chen J (2011) Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes. Enzym Microb Technol 48:339–344CrossRefGoogle Scholar
  29. 29.
    McKinlay JB, Zeikus JG, Vieille C (2005) Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Appl Environ Microbiol 71:6651–6656CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Xi Y-l, Chen K-q, Xu R, Zhang J-h, Bai X-f, Jiang M, Wei P, Chen J-y (2012) Effect of biotin and a similar compound on succinic acid fermentation by Actinobacillus succinogenes in a chemically defined medium. Biochem Eng J 69:87–92CrossRefGoogle Scholar
  31. 31.
    Chen KQ, Li J, Ma JF, Jiang M, Wei P, Liu ZM, Ying HJ (2011) Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber. Bioresour Technol 102:1704–1708CrossRefPubMedGoogle Scholar
  32. 32.
    Pateraki C, Almqvist H, Ladakis D, Lidén G, Koutinas AA, Vlysidis A (2016) Modelling succinic acid fermentation using a xylose based substrate. Biochem Eng J 114:26–41CrossRefGoogle Scholar
  33. 33.
    Salvachua D, Mohagheghi A, Smith H, Bradfield MF, Nicol W, Black BA, Biddy MJ, Dowe N, Beckham GT (2016) Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation. Biotechnol Biofuels 9:28–42CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5:597–609CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26CrossRefPubMedGoogle Scholar
  36. 36.
    Arora R, Behera S, Kumar S (2015) Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: a future perspective. Renew Sustain Energy Rev 51:699–717CrossRefGoogle Scholar
  37. 37.
    Li Q, Yang M, Wang D, Li W, Wu Y, Zhang Y, Xing J, Su Z (2010) Efficient conversion of crop stalk wastes into succinic acid production by Actinobacillus succinogenes. Bioresour Technol 101:3292–3294CrossRefPubMedGoogle Scholar
  38. 38.
    Yu J, Li Z, Ye Q, Yang Y, Chen S (2010) Development of succinic acid production from corncob hydrolysate by Actinobacillus succinogenes. J Ind Microbiol Biotechnol 37:1033–1040CrossRefPubMedGoogle Scholar
  39. 39.
    Li Q, Siles JA, Thompson IP (2010) Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85. Appl Microbiol Biotechnol 88:671–678CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wubliker Dessie
    • 1
    • 2
  • Junru Zhu
    • 1
  • Fengxue Xin
    • 1
  • Wenming Zhang
    • 1
    • 3
  • Youming Jiang
    • 1
  • Hao Wu
    • 1
  • Jiangfeng Ma
    • 1
  • Min Jiang
    • 1
    • 3
    Email author
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.Department of Biology, College of Natural and Computational ScienceMizan-Tepi UniversityTepiEthiopia
  3. 3.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations