Bioprocess and Biosystems Engineering

, Volume 41, Issue 8, pp 1225–1232 | Cite as

Bench scale production of butyramide using free and immobilized cells of Bacillus sp. APB-6

  • Rajendra SinghEmail author
  • Deepak Pandey
  • Neena Devi
  • Duni ChandEmail author
Research Paper


Butyramide is a commodity chemical having wide range of applications from material science to biological sciences including synthesis of therapeutic drugs, hydroxamic acids, and electrorheological fluids. The nitrile hydratase protein of Bacillus sp. APB-6 was explored to develop an efficient biocatalytic process for the biotransformation of butyronitrile to butyramide using free and immobilized cells. The reaction conditions for nitrile hydratase activity were not affected after immobilization of the free cells and the optimum pH and temperature for both free and immobilized cells were 8.0 and 55 °C, respectively. In a 1–l batch reaction, complete conversion of 3000 mM butyronitrile to butyramide was achieved using free and immobilized cells. Immobilization of the cells further enhanced their operational stability and reusability in repetitive cycles of butyramide production. This bioconversion resulted in the formation of butyramide at a rate of 522.0 g h−1 g−1 dcw.


Bacillus sp. APB-6 Nitrile hydratase Bioconversion Immobilization Butyronitrile Butyramide 



The authors acknowledge the Department of Biotechnology, Ministry of Science and Technology, New Delhi and Indian Council of Medical Research, New Delhi for the financial support in the form of Research Fellowships to Mr. Rajendra Singh and Mr. Deepak Pandey, respectively.


  1. 1.
    Lea MA, Xiao Q, Sadhu KA, Sharma S, Newmark HL (1993) Butyramide and monobutyrin: growth inhibitory and differentiating agents. Anticancer Res 13(1):145–149 (PMID 8476205) PubMedGoogle Scholar
  2. 2.
    Sirajuddin M, Ali S, McKee V, Sohail M, Pasha H (2014) Potentially bioactive organotin (IV) compounds: synthesis, characterization, in vitro bioactivities and interaction with SS-DNA. Eur J Med Chem 84:343–363. CrossRefPubMedGoogle Scholar
  3. 3.
    Sheng P, Wen W, Chan C, Ting G, Weikun YS (2005) Electrorheological fluids. US Patent 6852251Google Scholar
  4. 4.
    Yen CH, Lowrie HS, Dean RR (1974) Compounds related to 4-disopropylamino-2-phenyl-2(2-pyridyl) butyramide. Synthesis and antiarrhythmic activity. J Med Chem 17(11):1131–1135 (PMID 4412561) CrossRefPubMedGoogle Scholar
  5. 5.
    Ksander GM (1992) Certain n-substituted butyramide derivatives, US Patent 5166212Google Scholar
  6. 6.
    Raj J, Seth A, Prasad S, Bhalla TC (2007) Bioconversion of butyronitrile to butyramide using whole cells of Rhodococcus rhodochrous PA-34. Appl Microbiol Biotechnol 74:535–539. CrossRefPubMedGoogle Scholar
  7. 7.
    Thorpe JF, Whiteley MA (1966) Thorpe’s dictionary of applied chemistry, 4th edn, vol 2. Longman Green, London, p 50Google Scholar
  8. 8.
    Mehta PK, Bhatia SK, Bhatia RK, Bhalla TC (2016) Thermostable amidase catalyzed production of isonicotinic acid from isonicotinamide. Process Biochem 50(9):1400–1404. CrossRefGoogle Scholar
  9. 9.
    Velankar H, Clarke KG, Preez RD, Cowan DA, Stephanie G. Burton SG (2010) Developments in nitrile and amide biotransformation processes. Trends Biotechnol 28(11):561–569. CrossRefPubMedGoogle Scholar
  10. 10.
    Prasad S, Bhalla TC (2010) Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnol Adv 28:725–741. CrossRefPubMedGoogle Scholar
  11. 11.
    Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bhatia SK, Bhalla TC, Mehta PK, Bhatia RK (2014) Simultaneous purification of nitrile hydratase and amidase of Alcaligenes sp. MTCC 10674. 3 Biotech 4:375–381. CrossRefPubMedGoogle Scholar
  13. 13.
    Fang S, An X, Liu H, Cheng Y, Hou N, Feng L, Huang X, Li C (2015) Enzymatic degradation of aliphatic nitriles by Rhodococcus rhodochrous BX2, a versatile nitrile-degrading bacterium. Biores Technol 185:24–28. CrossRefGoogle Scholar
  14. 14.
    Martinez S, Yang X, Bennett B, Holz R (2017) A cobalt-containing eukaryotic nitrile hydratase. Biochem Biophys Acta 1865:107–112. CrossRefGoogle Scholar
  15. 15.
    Bhatia SK, Mehta PK, Bhatia RK, Bhalla TC (2013) An isobutyronitrile-induced bienzymatic system of Alcaligenes sp. MTCC 10674 and its application in the synthesis of alpha-hydroxyisobutyric acid. Bioprocess Biosyst Eng 36:613–625. CrossRefPubMedGoogle Scholar
  16. 16.
    Asano Y, Yasuda T, Tani T, Yamada H (1982) A new enzymatic method of acrylamide production. Agric Biol Chem 46:1183–1189Google Scholar
  17. 17.
    Watanabe I, Satoh Y, Enomoto K, Seki S, Sakashita K (1987) Optimal conditions for cultivation of Rhodococcus sp. N-774 and for conversion of acrylonitrile to acrylamide by whole cells. Agric Biol Chem 51:3201–3206. CrossRefGoogle Scholar
  18. 18.
    Nagasawa T, Shimizu H, Yamada H (1993) The superiority of the third-generation catalyst, Rhodococcus rhodochrous J1 nitrile hydratase, for industrial production of acrylamide. Appl Microbiol Biotechnol 40:189–195. CrossRefGoogle Scholar
  19. 19.
    Kim BY, Hyun HH (2002) Production of acrylamide using immobilized cells of Rhodococcus rhodochrous M33. Biotechnol Bioprocess Eng 7(4):194–200. CrossRefGoogle Scholar
  20. 20.
    Raj J, Prasad S, Bhalla TC (2006) Rhodococcus rhodochrous PA-34: a potential biocatalyst for acrylamide synthesis. Process Biochem 41:1359–1363. CrossRefGoogle Scholar
  21. 21.
    Kang MS, Han SS, Kim MY, Kim BY, Huh JP, Kim HS, Lee JH (2014) High-level expression in Corynebacterium glutamicum of nitrile hydratase from Rhodococcus rhodochrous for acrylamide production. Appl Microbiol Biotechnol 98:4379–4387. CrossRefPubMedGoogle Scholar
  22. 22.
    Lan Y, Zhang X, Liu Z, Zhou L, Shen R, Zhong X, Cui W, Zhou Z (2017) Overexpression and characterization of two types of nitrile hydratases from Rhodococcus rhodochrous J1. PLoS One 12(6):e0179833. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mauger J, Nagasawa T, Yamada H (1989) Synthesis of various aromatic amide derivatives using nitrile hydratase of Rhodococcus rhodochrous J1. Tetrahedron 45:1347–1354. CrossRefGoogle Scholar
  24. 24.
    Hann EC, Eisenberg A, Fager SK, Perkins NE, Gallagher FG, Cooper SM, Gavagan JE, Stieglitz B, Hennessey SM, DiCosimo R (1999) 5-Cyanovaleramide production using immobilized Pseudomonas chlororaphis B23. Bioorg Med Chem 7(10):2239–2245. CrossRefPubMedGoogle Scholar
  25. 25.
    Mauger J, Nagasawa T, Yamada H (1988) Nitrile hydratase catalyzed production of isonicotinamide, picolinamide and pyrazinamide from 4-cyanopyridine, 2-cyanopyridine and cyanopyrazine in Rhodococcus rhodochrous J1. J Biotechnol 8:87–95. CrossRefGoogle Scholar
  26. 26.
    Nagasawa T, Mathew CD, Mauger J, Yamada H (1988) Nitrile hydratase-catalyzed production of nicotinamide from 3-cyanopyridine in Rhodococcus rhodochrous J1. Appl Environ Microbiol 54:1766–1769 (PMC ID PMC202743) PubMedPubMedCentralGoogle Scholar
  27. 27.
    Prasad S, Raj J, Bhalla TC (2007) Bench scale conversion of 3-cyanopyridine to nicotinamide using resting cells of Rhodococcus rhodochrous PA-34. Indian J Microbiol 47:34–41. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang Z, Liu Z, Cui W, Zhou Z (2017) Establishment of bioprocess for synthesis of nicotinamide by recombinant Escherichia coli expressing high-molecular-mass nitrile hydratase. Appl Biochem Biotechnol 182(4):1458–1466. CrossRefPubMedGoogle Scholar
  29. 29.
    Wegman MA, Heinemann U, Stolz A, van Rantwijk F, Sheldon RA (2000) Stereoretentive nitrile hydratase-catalysed hydration of d-phenylglycine nitrile. Org Proc Res Dev 4(5):318–322. CrossRefGoogle Scholar
  30. 30.
    Vekova J, Pavlu L, Vosahlo J, Gabriel J (1995) Degradation of bromoxynil by resting and immobilized cells of Agrobacterium radiobacter 8/4 strain. Biotech Lett 17(4):449–452. CrossRefGoogle Scholar
  31. 31.
    Gilligan T, Yamada H, Nagasawa T (1993) Production of S-(+)-2-phenylpropionic acid from (R, S)-2-phenylpropionitrile by the combination of nitrile hydratase and stereoselective amidase in Rhodococcus equi TG 328. Appl Microbiol Biotechnol 39:720–725. CrossRefPubMedGoogle Scholar
  32. 32.
    Fallon RD, Stieglitz B, Turner I-Jr (1997) A Pseudomonas putida capable of stereoselective hydrolysis of nitriles. Appl Microbiol Biotechnol 47:156–161. CrossRefGoogle Scholar
  33. 33.
    Prepechalova I, Martinkova L, Stolz A, Ovesna M, Bezouska K, Kopecky J et al (2001) Purification and characterization of the enantioselective nitrile hydratase from Rhodococcus equi A4. Appl Microbiol Biotechnol 55:150–156CrossRefPubMedGoogle Scholar
  34. 34.
    Lin ZJ, Zheng RC, Zheng YG, Shen YC (2011) Biosynthesis of 2-amino-2,3-dimethylbutyramide by nitrile hydratase from a newly isolated cyanide-resistant strain of Rhodococcus qingshengii. Biotechnol Lett 33(9):1809–1813. CrossRefPubMedGoogle Scholar
  35. 35.
    Martinez S, Kuhna ML, Russell JT, Holza RC, Elgren TE (2014) Acrylamide production using encapsulated nitrile hydratase from Pseudonocardia thermophila in a sol–gel matrix. J Mol Catal B: Enzym 100:19–24. CrossRefGoogle Scholar
  36. 36.
    Raj J, Sharma NN, Prasad S, Bhalla TC (2008) Acrylamide synthesis using agar entrapped cells of Rhodococcus rhodochrous PA-34 in a partitioned fed batch reactor. J Industr Microbiol Technol 35:35–40. CrossRefGoogle Scholar
  37. 37.
    Pandey D, Singh R, Chand D (2011) An improved bioprocess for synthesis of acetohydroxamic acids using DTT (dithiothreitol) treated resting cells of Bacillus sp. APB-6. Bioresour Technol 102(11):6579–6586. CrossRefPubMedGoogle Scholar
  38. 38.
    Singh R, Pandey D, Dhariwal S, Sood P, Chand D (2018) Bioconversion of acrylonitrile using nitrile hydratase activity of Bacillus sp. APB-6. 3 Biotech. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kierstan MPJ, Coughlan MP (1985) Immobilization of cells and enzymes by gel entrapment. In: Immobilized cells and enzymes—a practical approach. IRL, Oxford, pp 43–45Google Scholar
  40. 40.
    Hjort CM, Godtfredsen SE, Emborg C (1990) Isolation and characterization of a nitrile hydratase from a Rhodococcus sp. J Chem Technol Biotechnol 48:217–226. CrossRefGoogle Scholar
  41. 41.
    Kumar H, Prasad S, Raj J, Bhalla TC (2006) Constitutive acetonitrile hydrolysing activity of Nocardia globerula NHB-2: optimization of production and reaction conditions. Ind J Exp Biol 44:240–245Google Scholar
  42. 42.
    Jin LQ, Liu ZQ, Zheng YG, Shen YC (2010) Identification and characterisation of Serratia marcescens ZJB-09104, a nitrile-converting bacteria. World J Microbiol Biotechnol 26:817–823. CrossRefGoogle Scholar
  43. 43.
    Bauer R, Hirrlinger B, Layh N, Stolz A, Knackmuss HJ (1994) Enantioselective hydrolysis of racemic 2-phenylpropionitrile and other (R, S)-2-arylpropionitriles by a new bacterial isolate, Agrobacterium tumefaciens strain d3. Appl Microbiol Biotechnol 42:1–7. CrossRefGoogle Scholar
  44. 44.
    Nawaz MS, Franklin W, Campbell WL, Heinze TM, Cerniglia CE (1991) Metabolism of acrylonitrile by Klebsiella pneumoniae. Arch Microbiol 156:231–238. CrossRefPubMedGoogle Scholar
  45. 45.
    Feng YS, Chen PC, Wen FS, Hsiao WY, Lee CM (2008) Nitrile hydratase from Mesorhizobium sp. F28 and its potential for nitrile biotransformation. Process Biochem 43:1391–1397. CrossRefGoogle Scholar
  46. 46.
    Bhatia SK, Mehta PK, Bhatia RK, Bhalla TC (2014) Optimization of arylacetonitrilase production from Alcaligenes sp. MTCC 10675 and its application in mandelic acid synthesis. Appl Microbiol Biotechnol 98:83–94. CrossRefPubMedGoogle Scholar
  47. 47.
    Mehta PK, Bhatia SK, Bhatia RK, Bhalla TC (2013) Purification and characterization of a novel thermo-active amidase from Geobacillus subterraneus RL-2a. Extremophiles 17:637–648. CrossRefPubMedGoogle Scholar
  48. 48.
    Choi YH, Uhm KN, Kim HK (2008) Biochemical characterization of Rhodococcus erythropolis N’4 nitrile hydratase acting on 4-chloro-3-hydroxybutyronitrile. J Mol Catal B Enzym 55:157–163. CrossRefGoogle Scholar
  49. 49.
    Lee CY, Choi SK, Chang HN (1993) Bench scale production of acrylamide using resting cells of Brevibacterium sp. CH2 in a fed batch reactor. Enzyme Microbiol Technol 15:979–984. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiotechnologyHimachal Pradesh UniversityShimlaIndia
  2. 2.Department of Reproductive BiologyAll India Institute of Medical SciencesDelhiIndia

Personalised recommendations