Bioprocess and Biosystems Engineering

, Volume 41, Issue 3, pp 443–447 | Cite as

Micelle-mediated transport disturbance providing extracellular strategy for alleviating n-butanol stress on Escherichia coli

  • Lin-Rui Tan
  • Peng-Fei Xia
  • Qian Li
  • Xian-Zheng Yuan
  • Shu-Guang WangEmail author
Rapid Communication


One barrier inhibiting further progress in biofuel production is the toxicity of biofuels towards their producers. It is promising to apply gene-based intracellular techniques to engineer better strains with higher organic solvent tolerance. These methods are, however, complex. In the present study, we developed a simple, manageable, and commercial extracellular prototypal strategy to alleviate n-butanol (n-BuOH) stress on Escherichia coli via a micelle-mediated transport disturbance. When the concentration of sodium dodecyl sulfate, a typical anionic surfactant, is high enough to form micelles, n-BuOH will be trapped into/onto the micelles, and the negative charge prevents the n-BuOH from approaching the cells. Our study provides an extracellular strategy to relieve the stress from n-BuOH, and it also exhibits a new angle to advance microbial factories through extracellular routines.


Biofuels Micelles n-Butanol Organic solvent tolerance Surfactants 



This work was supported by the National Natural Science Foundation of China (no. 21476130).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

449_2017_1872_MOESM1_ESM.docx (239 kb)
Supplementary material 1 (DOCX 239 KB)


  1. 1.
    Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14:288–304CrossRefGoogle Scholar
  2. 2.
    Lee JY, Yang KS, Jang SA et al (2011) Engineering butanol-tolerance in Escherichia coli with artificial transcription factor libraries. Biotechnol Bioeng 108:742–749CrossRefGoogle Scholar
  3. 3.
    Alper H, Moxley J, Nevoigt E et al (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568CrossRefGoogle Scholar
  4. 4.
    Smith KM, Liao JC (2011) An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metab Eng 13:674–681CrossRefGoogle Scholar
  5. 5.
    Fisher MA, Boyarskiy S, Yamada MR et al (2013) Enhancing tolerance to short-chain alcohols by engineering the Escherichia coli AcrB efflux pump to secrete the non-native substrate n-butanol. ACS Synth Biol 3:30–40CrossRefGoogle Scholar
  6. 6.
    Zingaro KA, Papoutsakis ET (2013) GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1, 2, 4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng 15:196–205CrossRefGoogle Scholar
  7. 7.
    Zhang H, Chong H, Ching CB, Jiang R (2012) Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance. Biotechnol Bioeng 109:1165–1172CrossRefGoogle Scholar
  8. 8.
    Wallace S, Balskus EP (2016) Designer micelles accelerate flux through engineered metabolism in E. coli and support biocompatible chemistry. Angew Chem Int Ed 55:6023–6027CrossRefGoogle Scholar
  9. 9.
    Segura A, Molina L, Fillet S et al (2012) Solvent tolerance in Gram-negative bacteria. Curr Opin Biotechnol 23:415–421CrossRefGoogle Scholar
  10. 10.
    Li Q, Xia P-F, Tan L-R et al (2017) Inducible microbial osmotic responses enable enhanced biosorption capability of cyanobacteria. Biochem Eng J 120:113–117CrossRefGoogle Scholar
  11. 11.
    Baumgarten T, Vazquez J, Bastisch C et al (2012) Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E. Appl Microbiol Biotechnol 93:837–845CrossRefGoogle Scholar
  12. 12.
    Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633CrossRefGoogle Scholar
  13. 13.
    Xia P-F, Li Q, Tan L-R et al (2016) Extracellular polymeric substances protect Escherichia coli from organic solvents. RSC Adv 6:59438–59444CrossRefGoogle Scholar
  14. 14.
    Baker GA, Pandey S, Pandey S, Baker SN (2004) A new class of cationic surfactants inspired by N-alkyl-N-methyl pyrrolidinium ionic liquids. Analyst 129:890–892CrossRefGoogle Scholar
  15. 15.
    Zhang Q, Ko NR, Oh JK (2012) Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications. Chem Commun 48:7542–7552CrossRefGoogle Scholar
  16. 16.
    Correa NM, Silber JJ, Riter RE, Levinger NE (2012) Nonaqueous polar solvents in reverse micelle systems. Chem Rev 112:4569–4602CrossRefGoogle Scholar
  17. 17.
    Guha S, Jaffé PR (1996) Bioavailability of hydrophobic compounds partitioned into the micellar phase of nonionic surfactants. Environ Sci Technol 30:1382–1391CrossRefGoogle Scholar
  18. 18.
    Behera K, Om H, Pandey S (2008) Modifying properties of aqueous cetyltrimethylammonium bromide with external additives: ionic liquid 1-hexyl-3-methylimidazolium bromide versus cosurfactant n-hexyltrimethylammonium bromide. J Phys Chem B 113:786–793CrossRefGoogle Scholar
  19. 19.
    Abbondanzi F, Cachada A, Campisi T et al (2003) Optimisation of a microbial bioassay for contaminated soil monitoring: bacterial inoculum standardisation and comparison with Microtox® assay. Chemosphere 53:889–897CrossRefGoogle Scholar
  20. 20.
    McEwen JT, Atsumi S (2012) Alternative biofuel production in non-natural hosts. Curr Opin Biotechnol 23:744–750CrossRefGoogle Scholar
  21. 21.
    Gronenberg LS, Marcheschi RJ, Liao JC (2013) Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 17:462–471CrossRefGoogle Scholar
  22. 22.
    Sheng G-P, Yu H-Q, Li X-Y (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28:882–894CrossRefGoogle Scholar
  23. 23.
    Zana R (1995) Aqueous surfactant-alcohol systems: a review. Adv Colloid Interface Sci 57:1–64CrossRefGoogle Scholar
  24. 24.
    Brown DG (2007) Relationship between micellar and hemi-micellar processes and the bioavailability of surfactant-solubilized hydrophobic organic compounds. Environ Sci Technol 41:1194–1199CrossRefGoogle Scholar
  25. 25.
    Lanzon JB, Brown DG (2013) Partitioning of phenanthrene into surfactant hemi-micelles on the bacterial cell surface and implications for surfactant-enhanced biodegradation. Water Res 47:4612–4620CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Lin-Rui Tan
    • 1
  • Peng-Fei Xia
    • 1
  • Qian Li
    • 1
  • Xian-Zheng Yuan
    • 1
  • Shu-Guang Wang
    • 1
    Email author
  1. 1.School of Environmental Science and EngineeringShandong UniversityJinanChina

Personalised recommendations