Bioprocess and Biosystems Engineering

, Volume 41, Issue 3, pp 295–312 | Cite as

Application of phototrophic biofilms: from fundamentals to processes

  • D. Strieth
  • R. Ulber
  • K. MufflerEmail author
Critical Review


Biotechnological production of valuables by microorganisms is commonly achieved by cultivating the cells as suspended solids in an appropriate liquid medium. However, the main portion of these organisms features a surface-attached growth in their native habitats. The utilization of such biofilms shows significant challenges, e.g. concerning control of pH, nutrient supply, and heat/mass transfer. But the use of biofilms might also enable novel and innovative production processes addressing robustness and strength of the applied biocatalyst, for example if variable conditions might occur in the process or a feedstock (substrate) is changed in its composition. Besides the robustness of a biofilm, the high density of the immobilized biocatalyst facilitates a simple separation of the catalyst and the extracellular product, whereas intracellular target compounds occur in a concentrated form; thus, expenses for downstream processing can be drastically reduced. While phototrophic organisms feature a fabulous spectrum of metabolites ranging from biofuels to biologically active compounds, the low cell density of phototrophic suspension cultures is still limiting their application for production processes. The review is focusing on pro- and eukaryotic microalgae featuring the production of valuable compounds and highlights requirements for their cultivation as phototrophic biofilms, i.e. setup as well as operation of biofilm reactors, and modeling of phototrophic growth.


Phototrophic biofilms Terrestrial cyanobacteria Microalgae Valuable products Commodities Renewable resources 



Funding by the German Research Foundation (DFG: MU 2985/3-1, UL 170/16-1, and CRC 926 “Microscale Morphology of Component Surfaces”, subproject C03), the Max Buchner Research Foundation (project funding reference number: 3414), and the Carl-Zeiss-Foundation is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Rosche B, Li XZ, Hauer B et al (2009) Microbial biofilms: a concept for industrial catalysis?. Trends Biotechnol 27:636–643. CrossRefGoogle Scholar
  2. 2.
    Muffler K, Lakatos M, Schlegel C et al (2014) Application of biofilm bioreactors in white biotechnology. Adv Biochem Eng Biotechnol 146:123–161. Google Scholar
  3. 3.
    Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86:1267–1279. CrossRefGoogle Scholar
  4. 4.
    Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531. CrossRefGoogle Scholar
  5. 5.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. CrossRefGoogle Scholar
  6. 6.
    Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648. CrossRefGoogle Scholar
  7. 7.
    Kesaano M, Sims RC (2014) Algal biofilm based technology for wastewater treatment. Algal Res 5:231–240. CrossRefGoogle Scholar
  8. 8.
    Stephenson PG, Moore CM, Terry MJ et al (2011) Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol 29:615–623. CrossRefGoogle Scholar
  9. 9.
    Lundquist TJ, Woertz IC, Quinn NW et al (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, University of California, CaliforniaGoogle Scholar
  10. 10.
    Molina Grima E, Belarbi E-H, Acién Fernández F et al (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515. CrossRefGoogle Scholar
  11. 11.
    Malcata FX (2011) Microalgae and biofuels: a promising partnership?. Trends Biotechnol 29:542–549. CrossRefGoogle Scholar
  12. 12.
    Pereira S, Zille A, Micheletti E et al (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941. CrossRefGoogle Scholar
  13. 13.
    Tago Y, Aida K (1977) Exocellular mucopolysaccharide closely related to bacterial floc formation. Appl Environ Microbiol 34:308–314Google Scholar
  14. 14.
    Roeselers G, van Loosdrecht MCM, Muyzer G (2008) Phototrophic biofilms and their potential applications. J Appl Phycol 20(3):227–235. CrossRefGoogle Scholar
  15. 15.
    Bharti A, Velmourougane K, Prasanna R (2017) Phototrophic biofilms: diversity, ecology and applications. J Appl Phycol 19(9):257. Google Scholar
  16. 16.
    Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633. CrossRefGoogle Scholar
  17. 17.
    Babauta JT, Atci E, Ha PT, Phuc T, Lindemann SR, Ewing T, Call DR, Fredrickson JK, Beyenal H (2014) Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat. Front Microbiol 5:11. CrossRefGoogle Scholar
  18. 18.
    Perez Gutierrez RM, Martinez Flores A, Vargas Solis R et al (2008) Two new antibacterial norabietane diterpenoids from cyanobacteria, Microcoleous lacustris. J Nat Med 62:328–331. CrossRefGoogle Scholar
  19. 19.
    Kumar V (2011) Antibacterial activity of crude extracts of Spirulina platensis and its structural elucidation of bioactive compound. J Med Plants Res. Google Scholar
  20. 20.
    Pawar ST, Puranik PR (2008) Screening of terrestrial and freshwater halotolerant cyanobacteria for antifungal activities. World J Microbiol Biotechnol 24(7):1019–1025. CrossRefGoogle Scholar
  21. 21.
    Kaushik P, Chauhan A (2008) In vitro antibacterial activity of laboratory grown culture of Spirulina platensis. Indian J Microbiol 48(3):348–352. CrossRefGoogle Scholar
  22. 22.
    El-Sheekh MM, Osman MEH, Dyab MA et al (2006) Production and characterization of antimicrobial active substance from the cyanobacterium Nostoc muscorum. Environ Toxicol Pharmacol 21(1):42–50. CrossRefGoogle Scholar
  23. 23.
    Ibanez E, Cifuentes A (2013) Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric 93(4):703–709. CrossRefGoogle Scholar
  24. 24.
    Markou G, Vandamme D, Muylaert K (2014) Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res 65:186–202. CrossRefGoogle Scholar
  25. 25.
    Volk R-B, Furkert FH (2006) Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res 161(2):180–186. CrossRefGoogle Scholar
  26. 26.
    Harun R, Singh M, Forde GM et al (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14(3):1037–1047. CrossRefGoogle Scholar
  27. 27.
    Singh RK, Tiwari SP, Rai AK et al (2011) Cyanobacteria: an emerging source for drug discovery. J Antibiot 64(6):401–412. CrossRefGoogle Scholar
  28. 28.
    Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae—a review. J Algal Biomass Utln 3(4):89–100Google Scholar
  29. 29.
    Plaza M, Herrero M, Cifuentes A et al (2009) Innovative natural functional ingredients from microalgae. J Agric Food Chem 57(16):7159–7170. CrossRefGoogle Scholar
  30. 30.
    Michalak I, Dmytryk A, Wieczorek PP et al (2015) Supercritical algal extracts: a source of biologically active compounds from nature. J Chem 2015(4):1–14. CrossRefGoogle Scholar
  31. 31.
    Amaro HM, Barros R, Guedes AC et al (2013) Microalgal compounds modulate carcinogenesis in the gastrointestinal tract. Trends Biotechnol 31(2):92–98. CrossRefGoogle Scholar
  32. 32.
    Caicedo NH, Heyduck-Söller B, Fischer U et al (2011) Bioproduction of antimicrobial compounds by using marine filamentous cyanobacterium cultivation. J Appl Phycol 23(5):811–818. CrossRefGoogle Scholar
  33. 33.
    Battah M, Ibrahem Q, El-Naggar M et al (2014) Antifungal agent from Spirulina maxima: extraction and characterization. Global J Pharmacol. Google Scholar
  34. 34.
    Chetsumon A, Fujieda K, Hirata K et al (1993) Optimization of antibiotic production by the cyanobacterium Scytonema sp. TISTR 8208 immobilized on polyurethane foam. J Appl Phycol 5(6):615–622. CrossRefGoogle Scholar
  35. 35.
    Bloor S, England RR (1989) Antibiotic production by the cyanobacterium Nostoc muscorum. J Appl Phycol 1(4):367–372CrossRefGoogle Scholar
  36. 36.
    Jaki B, Orjala J, Sticher O (1999) A novel extracellular diterpenoid with antibacterial activity from the cyanobacterium Nostoc commune. J Nat Prod 62(3):502–503. CrossRefGoogle Scholar
  37. 37.
    Bui HTN, Jansen R, Pham HTL et al (2007) Carbamidocyclophanes A–E, chlorinated paracyclophanes with cytotoxic and antibiotic activity from the Vietnamese cyanobacterium Nostoc sp. J Nat Prod 70(4):499–503. CrossRefGoogle Scholar
  38. 38.
    Kumar D, Dhar DW, Pabbi S et al (2014) Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). Indian J Plant Physiol 19:184–188. CrossRefGoogle Scholar
  39. 39.
    Raveh A, Carmeli S (2007) Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel. J Nat Prod 70(2):196–201. CrossRefGoogle Scholar
  40. 40.
    Salvador-Reyes LA, Sneed J, Paul VJ et al (2015) Amantelides A and B, polyhydroxylated macrolides with differential broad-spectrum cytotoxicity from a Guamanian marine cyanobacterium. J Nat Prod 78(8):1957–1962. CrossRefGoogle Scholar
  41. 41.
    Asthana RK, Srivastava A, Singh AP et al (2006) Identification of an antimicrobial entity from the cyanobacterium Fischerella sp. isolated from bark of Azadirachta indica (Neem) tree. J Appl Phycol 18(1):33–39. CrossRefGoogle Scholar
  42. 42.
    Davis TW, Berry DL, Boyer GL et al (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8(5):715–725. CrossRefGoogle Scholar
  43. 43.
    Mundt S, Kreitlow S, Nowotny A et al (2001) Biochemical and pharmacological investigations of selected cyanobacteria. Int J Hyg Environ Health 203(4):327–334. CrossRefGoogle Scholar
  44. 44.
    Ostensvik O, Skulberg OM, Underdal B et al (1998) Antibacterial properties of extracts from selected planktonic freshwater cyanobacteria—a comparative study of bacterial bioassays. J Appl Microbiol 84(6):1117–1124CrossRefGoogle Scholar
  45. 45.
    Asan-Ozusaglem M, Cakmak YS, Kaya M (2013) Bioactivity and antioxidant capacity of Anabaenopsis sp. (Cyanobacteria) extracts. J Algal Biomass Utln 2013(4):50–58Google Scholar
  46. 46.
    Kreitlow S, Mundt S, Lindequist U (1999) Cyanobacteria—a potential source of new biologically active substances. J Biotechnol 70(1–3):61–63. CrossRefGoogle Scholar
  47. 47.
    Wood JL, Miller CD, Sims RC et al (2015) Biomass and phycocyanin production from cyanobacteria dominated biofilm reactors cultured using oilfield and natural gas extraction produced water. Algal Res 11:165–168. CrossRefGoogle Scholar
  48. 48.
    Rascher U, Lakatos M, Büdel B et al (2002) Photosynthetic field capacity of cyanobacteria of a tropical inselberg of the Guiana Highlands. Eur J Phycol 38(3):247–256. CrossRefGoogle Scholar
  49. 49.
    Küpper H, Andresen E, Wiegert S et al (2009) Reversible coupling of individual phycobiliprotein isoforms during state transitions in the cyanobacterium Trichodesmium analysed by single-cell fluorescence kinetic measurements. Biochim Biophys Acta 1787(3):155–167. CrossRefGoogle Scholar
  50. 50.
    Katoh H, Furukawa J, Tomita-Yokotani K et al (2012) Isolation and purification of an axenic diazotrophic drought-tolerant cyanobacterium, Nostoc commune, from natural cyanobacterial crusts and its utilization for field research on soils polluted with radioisotopes. Biochim Biophys Acta 1817(8):1499–1505. CrossRefGoogle Scholar
  51. 51.
    Han P-p, Jia S-r, Sun Y et al (2014) Metabolomic approach to optimizing and evaluating antibiotic treatment in the axenic culture of cyanobacterium Nostoc flagelliforme. World J Microbiol Biotechnol 30(9):2407–2418. CrossRefGoogle Scholar
  52. 52.
    Choi G-G, Bae M-S, Ahn C-Y et al (2008) Induction of axenic culture of Arthrospira (Spirulina) platensis based on antibiotic sensitivity of contaminating bacteria. Biotechnol Lett 30(1):87–92. CrossRefGoogle Scholar
  53. 53.
    Sena L, Rojas D, Montiel E et al (2011) A strategy to obtain axenic cultures of Arthrospira spp. cyanobacteria. World J Microbiol Biotechnol 27(5):1045–1053. CrossRefGoogle Scholar
  54. 54.
    Katoh H, Shiga Y, Nakahira Y et al (2003) Isolation and characterization of a drought-tolerant cyanobacterium, Nostoc sp. HK-01. Microb Environ 18(2):82–88. CrossRefGoogle Scholar
  55. 55.
    Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21(1):127–133. CrossRefGoogle Scholar
  56. 56.
    Vonshak A, Cheung SM, Chen F (2000) Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensins (Cyanobacteria) cells to light. J Phycol 36(4):675–679. CrossRefGoogle Scholar
  57. 57.
    Mannan RM, Pakrasi HB (1993) Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium Anabaena variabilis ATCC 29413. Plant Physiol 103(3):971–977. CrossRefGoogle Scholar
  58. 58.
    Stewart WD (1980) Some aspects of structure and function in N2-fixing cyanobacteria. Annu Rev Microbiol 34:497–536. CrossRefGoogle Scholar
  59. 59.
    Adams DG (2000) Heterocysts formation in cyanobacteria. Curr Opin Microbiol 3(6):618–624CrossRefGoogle Scholar
  60. 60.
    Zhang C-C, Laurent S, Sakr S et al (2006) Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Mol Microbiol 59(2):367–375. CrossRefGoogle Scholar
  61. 61.
    Walsby AE (2007) Cyanobacterial heterocysts: terminal pores proposed as sites of gas exchange. Trends Microbiol 15(8):340–349. CrossRefGoogle Scholar
  62. 62.
    Chiu S-Y, Kao C-Y, Chen C-H et al (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99(9):3389–3396. CrossRefGoogle Scholar
  63. 63.
    Beardall J, Giordano M (2002) Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms, and their regulation. Funct Plant Biol 29(3):335. CrossRefGoogle Scholar
  64. 64.
    Raven JA, Giordano M, Beardall J et al (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos Trans R Soc Lond B Biol Sci 367(1588):493–507. CrossRefGoogle Scholar
  65. 65.
    Raven JA (1991) Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO and temperature. Plant Cell Environ 14(8):779–794. CrossRefGoogle Scholar
  66. 66.
    Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131. CrossRefGoogle Scholar
  67. 67.
    Tandeau de Marsac N (1977) Occurence and nature of chromatic adaption in cyanobacteria. J Bacteriol 130(1):82–91Google Scholar
  68. 68.
    Rellan S, Osswald J, Saker M et al (2009) First detection of anatoxin-a in human and animal dietary supplements containing cyanobacteria. Food Chem Toxicol 47(9):2189–2195. CrossRefGoogle Scholar
  69. 69.
    Karsten U, Herburger K, Holzinger A (2016) Living in biological soil crust communities of African deserts—physiological traits of green algal Klebsormidium species (Streptophyta) to cope with desiccation, light and temperature gradients. J Plant Physiol 194:2–12. CrossRefGoogle Scholar
  70. 70.
    Lakatos M, Strieth D (2017) Terrestrial microalgae: novel concepts for biotechnology and applications. Progr Bot. Google Scholar
  71. 71.
    Luttge U, Budel B (2010) Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark. Plant Biol (Stuttg) 12(3):437–444. CrossRefGoogle Scholar
  72. 72.
    Ma R, Lu F, Bi Y et al (2015) Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kutzing. Biotechnol Lett 37(8):1663–1669. CrossRefGoogle Scholar
  73. 73.
    Cuellar-Bermudez SP, Romero-Ogawa MA, Vannela R et al (2015) Effects of light intensity and carbon dioxide on lipids and fatty acids produced by Synechocystis sp. PCC6803 during continuous flow. Algal Res 12:10–16. CrossRefGoogle Scholar
  74. 74.
    Apel AC, Weuster-Botz D (2015) Engineering solutions for open microalgae mass cultivation and realistic indoor simulation of outdoor environments. Bioprocess Biosyst Eng 38(6):995–1008. CrossRefGoogle Scholar
  75. 75.
    Broenske J, Döbel K, Franke H et al (2002) Installation for carrying out photochemical and photocatalytic reactions and photoinduced processes (EP0968273 B1)Google Scholar
  76. 76.
    Morita M, Watanabe Y, Saiki H (2000) Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnol Bioeng 69(6):693–698CrossRefGoogle Scholar
  77. 77.
    Huber EW (2012) Hanging garden planter apparatus with integrated drainage system (US20120247010 A1)Google Scholar
  78. 78.
    Münkel R, Schmid-Staiger U, Werner A et al (2013) Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Biotechnol Bioeng 110(11):2882–2893. CrossRefGoogle Scholar
  79. 79.
    Trösch W (2001) Bioreaktor für die Kultivierung von Mikroorganismen sowie Verfahren zur Herstellung desselben (WO2002031102 A1)Google Scholar
  80. 80.
    Cordes R (2005) Vorrichtung zur Zucht und Massenproduktion von Algen (DE 102004007564 A1)Google Scholar
  81. 81.
    Posten C, Jacobi A, Steinweg C et al (2011) Photobioreactor (US20110318804 A1)Google Scholar
  82. 82.
    Lakatos M, Bilger W, Büdel B (2001) Carotenoid composition of terrestrial cyanobacteria: response to natural light conditions in open rock habitats in Venezuela. Eur J Phycol 36(4):367–375. CrossRefGoogle Scholar
  83. 83.
    Kumar A, Ergas S, Yuan X et al (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28(7):371–380. CrossRefGoogle Scholar
  84. 84.
    Johnson MB, Wen Z (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85(3):525–534. CrossRefGoogle Scholar
  85. 85.
    Kuhne S, Strieth D, Lakatos M et al (2014) A new photobioreactor concept enabling the production of desiccation induced biotechnological products using terrestrial cyanobacteria. J Biotechnol 192 Pt A:28–33. CrossRefGoogle Scholar
  86. 86.
    Ozkan A, Kinney K, Katz L et al (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol 114:542–548. CrossRefGoogle Scholar
  87. 87.
    Christenson LB, Sims RC (2012) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol Bioeng 109(7):1674–1684. CrossRefGoogle Scholar
  88. 88.
    Tian X, Liao Q, Zhu X et al (2010) Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production. Bioresour Technol 101(3):977–983. CrossRefGoogle Scholar
  89. 89.
    Podola B, Li T, Melkonian M (2017) Porous substrate bioreactors: a paradigm shift in microalgal biotechnology?. Trends Biotechnol 35(2):121–132. CrossRefGoogle Scholar
  90. 90.
    Haley JW, Ahrens TD, Kitchner SR (2014) Systems, apparatuses and methods for treating wastewater (US8809037 B2)Google Scholar
  91. 91.
    Zhuang L-L, Hu H-Y, Wu Y-H et al (2014) A novel suspended-solid phase photobioreactor to improve biomass production and separation of microalgae. Bioresour Technol 153:399–402. CrossRefGoogle Scholar
  92. 92.
    Jorquera O, Kiperstok A, Sales EA et al (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101(4):1406–1413. CrossRefGoogle Scholar
  93. 93.
    Schnurr PJ, Espie GS, Allen DG (2013) Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour Technol 136:337–344. CrossRefGoogle Scholar
  94. 94.
    Blanken W, Janssen M, Cuaresma M et al (2014) Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor. Biotechnol Bioeng 111(12):2436–2445. CrossRefGoogle Scholar
  95. 95.
    Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Purif Rev 38(4):291–325. CrossRefGoogle Scholar
  96. 96.
    Herrero M, Cifuents A, IBbanez E (2006) Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae. A review. Food Chem 98(1):136–148. CrossRefGoogle Scholar
  97. 97.
    Cheung P (1999) Temperature and pressure effects on supercritical carbon dioxide extraction of n-3 fatty acids from red seaweed. Food Chem 65(3):399–403. CrossRefGoogle Scholar
  98. 98.
    Hejazi MA, Holwerda E, Wijffels RH (2004) Milking microalga Dunaliella salina for beta-carotene production in two-phase bioreactors. Biotechnol Bioeng 85(5):475–481. CrossRefGoogle Scholar
  99. 99.
    Griehl C, Kleinert C, Griehl C et al (2015) Design of a continuous milking bioreactor for non-destructive hydrocarbon extraction from Botryococcus braunii. J Appl Phycol 27(5):1833–1843. CrossRefGoogle Scholar
  100. 100.
    Zhang F, Cheng L-H, Xu X-H et al (2013) Application of memberane dispersion for enhanced lipid milking from Botryococcus braunii FACHB 357. J Biotechnol 165(1):22–29. CrossRefGoogle Scholar
  101. 101.
    Glembin P, Racheva R, Kerner M et al (2014) Micelle mediated extraction of fatty acids from microalgae cultures: implementation for outdoor cultivation. Sep Purif Technol 135:127–134. CrossRefGoogle Scholar
  102. 102.
    Ramachandra TV, Mahapatra DM, B K et al (2009) Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind Eng Chem Res 48(19):8769–8788. CrossRefGoogle Scholar
  103. 103.
    Xu Q-m, Cheng J-s, Ge Z-q et al (2004) Effects of organic solvents on membrane of Taxus cuspidata cells in. Plant Cell Tiss Org 79(1):63–69. CrossRefGoogle Scholar
  104. 104.
    Choi SP, Bahn S-H, Sim SJ (2013) Improvement of hydrocarbon recovery by spouting solvent into culture of Botryococcus braunii. Bioprocess Biosyst Eng 36(12):1977–1985. CrossRefGoogle Scholar
  105. 105.
    Hahn T, Zayed A, Kovacheva M et al (2016) Dye affinity chromatography for fast and simple purification of fucoidan from marine brown algae. Eng Life Sci 16(1):78–87. CrossRefGoogle Scholar
  106. 106.
    Zayed A, Muffler K, Hahn T et al (2016) Physicochemical and biological characterization of Fucoidan from Fucus vesiculosus purified by dye affinity chromatography. Mar Drugs. Google Scholar
  107. 107.
    Coles JF, Jones RC (2000) Effect of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river. J Phycol 36(1):7–16. CrossRefGoogle Scholar
  108. 108.
    Sivonen K (1990) Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl Environ Microbiol 56(9):2658–2666Google Scholar
  109. 109.
    Giraldes-Ruiz N, Mateo P, Bonilla I et al (1997) The relationship between intracellular pH, growth characteristics and calcium in the cyanobacterium Anabaena sp. strain PCC7120 exposed to low pH. New Phytol 137(4):599–605. CrossRefGoogle Scholar
  110. 110.
    Qian F, Dixon DR, Newcombe G et al (2014) The effect of pH on the release of metabolites by cyanobacteria in conventional water treatment processes. Harmful Algae 39:253–258. CrossRefGoogle Scholar
  111. 111.
    Béchet Q, Shilton A, Guieysse B (2013) Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv 31(8):1648–1663. CrossRefGoogle Scholar
  112. 112.
    Kuhne S, Strieth D, Weber A et al (2014) Screening of two terrestrial cyanobacteria for biotechnological production processes in shaking flasks, bubble columns, and stirred tank reactors. J Appl Phycol 26(4):1639–1648. CrossRefGoogle Scholar
  113. 113.
    Ramanan R, Kim B-H, Cho D-H et al (2016) Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34(1):14–29. CrossRefGoogle Scholar
  114. 114.
    Bordel S, Guieysse B, Muñoz R (2009) Mechanistic model for the reclamation of industrial wastewaters using algal–bacterial photobioreactors. Environ Sci Technol 43(9):3200–3207. CrossRefGoogle Scholar
  115. 115.
    Peeters JCH, Eilers P (1978) The relationship between light intensity and photosynthesis—a simple mathematical model. Hydrobiol Bull 12(2):134–136. CrossRefGoogle Scholar
  116. 116.
    Megard RO, Tonkyn DW, Senft WH (1984) Kinetics of oxygenic photosynthesis in planktonic algae. J Plankton Res 6(2):325–337. CrossRefGoogle Scholar
  117. 117.
    Aiba S (1982) Growth kinetics of photosynthetic microorganisms. In: Fiechter A (ed) Microbial reactions, vol 23. Springer, Berlin, pp 85–156CrossRefGoogle Scholar
  118. 118.
    Zhang D, Xiao N, Mahbubani KT et al (2015) Bioprocess modelling of biohydrogen production by Rhodopseudomonas palustris: model development and effects of operating conditions on hydrogen yield and glycerol conversion efficiency. Chem Eng Sci 130:68–78. CrossRefGoogle Scholar
  119. 119.
    Zhang D, Dechatiwongse P, del Rio-Chanona EA et al (2015) Modelling of light and temperature influences on cyanobacterial growth and biohydrogen production. Algal Res 9:263–274. CrossRefGoogle Scholar
  120. 120.
    Ozkan A, Berberoglu H (2013) Adhesion of algal cells to surfaces. Biofouling 29(4):469–482. CrossRefGoogle Scholar
  121. 121.
    Shen Y, Xu X, Zhao Y et al (2014) Influence of algae species, substrata and culture conditions on attached microalgal culture. Bioprocess Biosyst Eng 37(3):441–450. CrossRefGoogle Scholar
  122. 122.
    Murphy TE, Berberoglu H (2014) Flux balancing of light and nutrients in a biofilm photobioreactor for maximizing photosynthetic productivity. Biotechnol Prog 30(2):348–359. CrossRefGoogle Scholar
  123. 123.
    Muñoz Sierra JD, Picioreanu C, van Loosdrecht MCM (2014) Modeling phototrophic biofilms in a plug-flow reactor. Water Sci Technol 70(7):1261–1270. CrossRefGoogle Scholar
  124. 124.
    Govindjee S, Shevela D (2011) Adventures with cyanobacteria: a personal perspective. Front Plant Sci 2:28. CrossRefGoogle Scholar
  125. 125.
    Glemser M, Heining M, Schmidt J et al (2016) Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Appl Microbiol Biotechnol 100(3):1077–1088. CrossRefGoogle Scholar
  126. 126.
    Heining M, Sutor A, Stute SC et al (2015) Internal illumination of photobioreactors via wireless light emitters: a proof of concept. J Appl Phycol 27(1):59–66. CrossRefGoogle Scholar
  127. 127.
    Webb C, Fukuda H, Atkinson B (1986) The production of cellulase in a spouted bed fermentor using cells immobilized in biomass support particles. Biotechnol Bioeng 28(1):41–50. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Life Sciences and EngineeringUniversity of Applied Sciences BingenBingenGermany
  2. 2.Institute of Bioprocess EngineeringUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations