Advertisement

Bioprocess and Biosystems Engineering

, Volume 41, Issue 2, pp 229–235 | Cite as

Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha

  • Shashi Kant Bhatia
  • Jung-Ho Kim
  • Min-Sun Kim
  • Junyoung Kim
  • Ju Won Hong
  • Yoon Gi Hong
  • Hyun-Joong Kim
  • Jong-Min Jeon
  • Sang-Hyoun Kim
  • Jungoh Ahn
  • Hongweon Lee
  • Yung-Hun YangEmail author
Research Paper

Abstract

Polyhydroxyalkonate (PHA) is a type of polymer that has the potential to replace petro-based plastics. To make PHA production more economically feasible, there is a need to find a new carbon source and engineer microbes to produce a commercially valuable polymer. Coffee waste is an inexpensive raw material that contains fatty acids. It can act as a sustainable carbon source and seems quite promising with PHA production in Ralstonia eutropha, which is a well-known microbe for PHA accumulation, and has the potential to utilize fatty acids. In this study, to make poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)), which has superior properties in terms of biodegradability, biocompatibility, and mechanical strength, engineered strain Ralstonia eutropha Re2133 overexpressing (R)-specific enoyl coenzyme-A hydratase (phaJ) and PHA synthetase (phaC2) with deletion of acetoacetyl Co-A reductases (phaB1, phaB2, and phaB3) was used to produce PHA from coffee waste oil. At a coffee oil concentration of 1.5%, and C/N ratio of 20, the R. eutropha Re2133 fermentation process results in 69% w/w of DCW PHA accumulation and consists of HB (78 mol%) and HHx (22 mol%). This shows the feasibility of using coffee waste oil for P(HB-co-HHx) production, as it is a low-cost fatty acid enriched waste material.

Keywords

Polyhydroxyalkonate Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Ralstonia eutropha 

Notes

Acknowledgements

The authors acknowledge the KU Research Professor Program of Konkuk University, Seoul, South Korea for providing financial support to Dr. Shashi Kant Bhatia. This study was also supported by the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2017R1A2A2A07000900, 2017M3A9E4077234, 2017R1D1A1B03030766), and R&D Program of MOTIE/KEIT (10048350). Consulting service from the Microbial Carbohydrate Resource Bank (MCRB, Seoul, Korea) was kindly appreciated.

References

  1. 1.
    Obruca S, Benesova P, Kucera D, Petrik S, Marova I (2015) Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. New Biotechnol 32:569–574CrossRefGoogle Scholar
  2. 2.
    Murthy PS, Naidu MM (2012) Sustainable management of coffee industry by-products and value addition—a review. Resour Conserv Recy 66:45–58CrossRefGoogle Scholar
  3. 3.
    Obruca S, Petrik S, Benesova P, Svoboda Z, Eremka L, Marova I (2014) Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl Microbiol Biotechnol 98:5883–5890CrossRefGoogle Scholar
  4. 4.
    Park J, Kim B, Lee JW (2016) In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production. Bioresour Technol 221:55–60CrossRefGoogle Scholar
  5. 5.
    Bhatia SK, Shim Y-H, Jeon J-M, Brigham CJ, Kim Y-H, Kim H-J, Seo H-M, Lee J-H, Kim J-H, Yi D-H, Lee YK, Yang Y-H (2015) Starch based polyhydroxybutyrate production in engineered Escherichia coli. Bioprocess Biosyst Eng 38:1479–1484CrossRefGoogle Scholar
  6. 6.
    Kumar P, Ray S, Patel SK, Lee J-K, Kalia VC (2015) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. In J Biol Macromol 78:9–16CrossRefGoogle Scholar
  7. 7.
    Vastano M, Casillo A, Corsaro MM, Sannia G, Pezzella C (2015) Production of medium chain length polyhydroxyalkanoates from waste oils by recombinant Escherichia coli. Eng Life Sci 15:700–709CrossRefGoogle Scholar
  8. 8.
    Ciesielski S, Możejko J, Pisutpaisal N (2015) Plant oils as promising substrates for polyhydroxyalkanoates production. J Clean Prod 106:408–421CrossRefGoogle Scholar
  9. 9.
    Kumar P, Singh M, Mehariya S, Patel SKS, Lee J-K, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Ind J Microbiol 54:151–157CrossRefGoogle Scholar
  10. 10.
    Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Ind J Microbiol 55:1–7CrossRefGoogle Scholar
  11. 11.
    Kumar P, Patel SKS, Lee J-K, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561CrossRefGoogle Scholar
  12. 12.
    Sathiyanarayanan G, Bhatia SK, Song H-S, Jeon J-M, Kim J, Lee YK, Kim Y-G, Yang Y-H (2017) Production and characterization of medium-chain-length polyhydroxyalkanoate copolymer from Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620. Int J Biol Macromol 97:710–720CrossRefGoogle Scholar
  13. 13.
    Misra SK, Valappil SP, Roy I, Boccaccini AR (2006) Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules 7:2249–2258CrossRefGoogle Scholar
  14. 14.
    Sato H, Nakamura M, Padermshoke A, Yamaguchi H, Terauchi H, Ekgasit S, Noda I, Ozaki Y (2004) Thermal behavior and molecular interaction of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) studied by wide-angle X-ray diffraction. Macromolecules 37:3763–3769CrossRefGoogle Scholar
  15. 15.
    Budde CF, Riedel SL, Willis LB, Rha C, Sinskey AJ (2011) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. Appl Environ Microbiol 77:2847–2854CrossRefGoogle Scholar
  16. 16.
    Kahar P, Tsuge T, Taguchi K, Doi Y (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stab 83:79–86CrossRefGoogle Scholar
  17. 17.
    Riedel SL, Jahns S, Koenig S, Bock MCE, Brigham CJ, Bader J, Stahl U (2015) Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. J Biotechnol 214:119–127CrossRefGoogle Scholar
  18. 18.
    Jeon J-M, Kim H-J, Bhatia SK, Sung C, Seo H-M, Kim J-H, Park H-Y, Lee D, Brigham CJ, Yang Y-H (2017) Application of acetyl-CoA acetyltransferase (AtoAD) in Escherichia coli to increase 3-hydroxyvalerate fraction in poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioprocess Biosyst Eng 1–9Google Scholar
  19. 19.
    Jeon J-M, Brigham CJ, Kim Y-H, Kim H-J, Yi D-H, Kim H, Rha C, Sinskey AJ, Yang Y-H (2014) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)(P (HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Appl Microbiol Biotechnol 98:5461–5469CrossRefGoogle Scholar
  20. 20.
    Bhatia SK, Yi DH, Kim HJ, Jeon JM, Kim YH, Sathiyanarayanan G, Seo H, Lee J, Kim JH, Park K (2015) Overexpression of succinyl-CoA synthase for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production in engineered Escherichia coli BL21 (DE3). J Appl Microbiol 119:724–735CrossRefGoogle Scholar
  21. 21.
    Fiedler S, Steinbüchel A, Rehm BH (2002) The role of the fatty acid β-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch Microbiol 178:149–160CrossRefGoogle Scholar
  22. 22.
    Park SJ, Kim TW, Kim MK, Lee SY, Lim S-C (2012) Advanced bacterial polyhydroxyalkanoates: towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol Adv 30:1196–1206CrossRefGoogle Scholar
  23. 23.
    Bhatia SK, Bhatia RK, Yang Y-H (2016) Biosynthesis of polyesters and polyamide building blocks using microbial fermentation and biotransformation. Rev Environ Sci Bio 15:639–663CrossRefGoogle Scholar
  24. 24.
    Seo H-M, Kim J-H, Jeon J-M, Song H-S, Bhatia SK, Sathiyanarayanan G, Park K, Kim KJ, Lee SH, Kim HJ, Yang Y-H (2016) In situ immobilization of lysine decarboxylase on a biopolymer by fusion with phasin. Process Biochem 51:1413–1419CrossRefGoogle Scholar
  25. 25.
    Bhatia SK, Yang Y-H (2017) Microbial production of volatile fatty acids: current status and future perspectives. Rev Environ Sci Bio 1–19Google Scholar
  26. 26.
    Yang Y-H, Brigham CJ, Budde CF, Boccazzi P, Willis LB, Hassan MA, Yusof ZAM, Rha C, Sinskey AJ (2010) Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha. Appl Microbiol Biotechnol 87:2037–2045CrossRefGoogle Scholar
  27. 27.
    Jüngert JR, Borisova M, Mayer C, Wolz C, Brigham CJ, Sinskey AJ, Jendrossek D (2017) Absence of ppGpp Leads to increased mobilization of intermediately accumulated Poly(3-hydroxybutyrate) (PHB) in Ralstonia eutropha H16. Appl Environ Microbiol doi.  https://doi.org/10.1016/j.ymben.2017.05.007 Google Scholar
  28. 28.
    Jeon JM, Brigham CJ, Kim YH, Kim HJ, Yi DH, Kim H, Rha C, Sinskey AJ, Yang YH (2014) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Appl Microbiol Biotechnol 98:5461–5469CrossRefGoogle Scholar
  29. 29.
    Budde CF, Mahan AE, Lu J, Rha C, Sinskey AJ (2010) Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16. J Bacteriol 192:5319–5328CrossRefGoogle Scholar
  30. 30.
    Al-Hamamre Z, Foerster S, Hartmann F, Kröger M, Kaltschmitt M (2012) Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel 96:70–76CrossRefGoogle Scholar
  31. 31.
    Braunegg G, Sonnleitner B, Lafferty RM (1978) A rapid method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 6Google Scholar
  32. 32.
    Bhatia SK, Kim J, Song H-S, Kim HJ, Jeon J-M, Sathiyanarayanan G, Yoon J-J, Park K, Kim Y-G, Yang Y-H (2017) Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01. Bioresour Technol 233:99–109CrossRefGoogle Scholar
  33. 33.
    Bhatia SK, Lee B-R, Sathiyanarayanan G, Song H-S, Kim J, Jeon J-M, Kim J-H, Park S-H, Yu J-H, Park K, Yang Y-H (2016) Medium engineering for enhanced production of undecylprodigiosin antibiotic in Streptomyces coelicolor using oil palm biomass hydrolysate as a carbon source. Bioresour Technol 217:141–149CrossRefGoogle Scholar
  34. 34.
    Abdullah M, Bulent Koc A (2013) Oil removal from waste coffee grounds using two-phase solvent extraction enhanced with ultrasonication. Renew Energy 50:65–970CrossRefGoogle Scholar
  35. 35.
    Murugan P, Gan C-Y, Sudesh K (2017) Biosynthesis of P(3HB-co-3HHx) with improved molecular weights from a mixture of palm olein and fructose by Cupriavidus necator Re2058/pCB113. Int J Biol Macromol 102:112–1119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Shashi Kant Bhatia
    • 1
    • 2
  • Jung-Ho Kim
    • 1
  • Min-Sun Kim
    • 1
  • Junyoung Kim
    • 1
  • Ju Won Hong
    • 1
  • Yoon Gi Hong
    • 1
  • Hyun-Joong Kim
    • 1
  • Jong-Min Jeon
    • 1
  • Sang-Hyoun Kim
    • 3
  • Jungoh Ahn
    • 4
  • Hongweon Lee
    • 4
  • Yung-Hun Yang
    • 1
    • 2
    Email author
  1. 1.Department of Biological Engineering, College of EngineeringKonkuk UniversitySeoulSouth Korea
  2. 2.Institute for Ubiquitous Information Technology and Applications (CBRU)Konkuk UniversitySeoulSouth Korea
  3. 3.Department of Environmental EngineeringDaegu universityGyeongsanSouth Korea
  4. 4.Biotechnology Process Engineering CenterKorea Research Institute Bioscience Biotechnology (KRIBB)DaejeonSouth Korea

Personalised recommendations