Bioprocess and Biosystems Engineering

, Volume 40, Issue 12, pp 1763–1773 | Cite as

Scale-up cultivation enhanced arachidonic acid accumulation by red microalgae Porphyridium purpureum

  • Jingyu Chang
  • Kai Le
  • Xiaoqiang Song
  • Kailin Jiao
  • Xianhai Zeng
  • Xueping Ling
  • Tuo Shi
  • Xing Tang
  • Yong Sun
  • Lu Lin
Research Paper


The present study attempts to cultivate Porphyridium purpureum under different scale-up conditions for further development and commercialization of microalgae-derived PUFAs such as ARA and EPA. Different temperatures (25, 30, and 35 °C) and light intensities (70, 165, and 280 μmol/m2s) were applied to the 50 L pilot-scale cultivation of P. purpureum in ASW. The cultivation under the light intensity of 280 μmol/m2s at 35 °C obtained biomass concentration up to 9.52 g/L, total fatty acid content to 56.82 mg/g, and ARA content to 22.29 mg/g. While the maximum EPA content of 7.00 mg/g was achieved under the light intensity of 280 μmol/m2s at 25 °C and the highest ratio of UFAs to TFAs of 74.66% was also obtained in this trial. Both biomass concentration and TFAs content were improved by increasing light intensity and temperature. Moreover, the ratio of ARA to EPA was enhanced by increasing cultivation temperature under the light intensity of 280 μmol/m2s. In contrast with flask culture, the conversion of linoleic acid (C18:2) to ARA was enhanced in scale-up culture, leading to more ARA content. Phosphate limitation enhanced the synthesis of lipid and LPUFAs. Moreover, the biomass concentration and biosynthesis of palmitic acid were preferred by sufficient C (NaHCO3).

Graphical abstract


Scale-up cultivation Enhance Arachidonic acid Phosphate limitation Porphyridium purpureum 

Supplementary material

449_2017_1831_MOESM1_ESM.doc (227 kb)
Supplementary material 1 (DOC 227 kb)


  1. 1.
    Guo X, Su G, Li Z, Chang J, Zeng X, Sun Y, Lu Y, Lin L (2015) Light intensity and N/P nutrient affect the accumulation of lipid and unsaturated fatty acids by Chlorella sp. Bioresour Technol 191:385–390CrossRefGoogle Scholar
  2. 2.
    Ramana K, Xavier J, Sharma R (2017) Recent trends in pharmaceutical biotechnology. Pharm Biotechnol Curr Res 1:1–10Google Scholar
  3. 3.
    Chen WH, Lin BJ, Huang MY, Chang JS (2015) Thermochemical conversion of microalgal biomass into biofuels: a review. Bioresour Technol 184:314–327CrossRefGoogle Scholar
  4. 4.
    Juntila DJ, Bautista MA, Monotilla W (2015) Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions. Bioresour Technol 191:395–398CrossRefGoogle Scholar
  5. 5.
    Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846CrossRefGoogle Scholar
  6. 6.
    Zeng X, Guo X, Su G, Danquah MK, Zhang S, Lu Y, Sun Y, Lin L (2015) Bioprocess considerations for microalgal-based wastewater treatment and biomass production. Renew Sustain Energy Rev 42:1385–1392CrossRefGoogle Scholar
  7. 7.
    Gao F, Nan J, Zhang X (2017) Simulating a cyclic activated sludge system by employing a modified ASM3 model for wastewater treatment. Bioprocess Biosyst Eng 40:877–890CrossRefGoogle Scholar
  8. 8.
    Fábregas J, García D, Morales E, Domínguez A, Otero A (1998) Renewal rate of semicontinuous cultures of the microalga Porphyridium cruentum modifies phycoerythrin, exopolysaccharide and fatty acid productivity. J Ferment Bioeng 86:477–481CrossRefGoogle Scholar
  9. 9.
    Zhao W, Wang Y, Jiang X, Huang J, Chen B (2009) Effect of different fatty acid extraction methods and growth condition on Porphyridium cruentum AA and EPA contnets. Sci Technol Food Ind 30:168–171Google Scholar
  10. 10.
    Fuentes MMR, Fernández GGA, Pérez JAS, Guerrero JLG (2000) Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem 70:345–353CrossRefGoogle Scholar
  11. 11.
    Cohen Z (1999) Chemicals from microalgae. CRC Press, LondonGoogle Scholar
  12. 12.
    Lutzu GA, Zhang L, Zhang Z, Liu T (2017) Feasibility of attached cultivation for polysaccharides production by Porphyridium cruentum. Bioprocess Biosyst Eng 40:73–83CrossRefGoogle Scholar
  13. 13.
    Wang C, Wang Y, Tian Z (2003) High density culture of Porphyridium cruentum in a 42 L internal airlift loop photobioreactor. Chin J Bioprocess Eng 3:564–569Google Scholar
  14. 14.
    Androga DD, Uyar B, Koku H, Eroglu I (2017) Dynamic modeling of temperature change in outdoor operated tubular photobioreactors. Bioprocess Biosyst Eng 40:1017–1031CrossRefGoogle Scholar
  15. 15.
    Golueke CG, Oswald WJ (1962) Mass culture of Porphyridium cruentum. Appl Microbiol 10:102–107Google Scholar
  16. 16.
    Fuentes MR, Sánchez JG, Sevilla JF, Fernández FA, Pérez JS, Grima EM (1999) Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: quantitative analysis of the daily cyclic variation of culture parameters. J Biotechnol 70:271–288CrossRefGoogle Scholar
  17. 17.
    Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up and future prospects. Biotechnol Bioeng 81:193–210CrossRefGoogle Scholar
  18. 18.
    Singh S, Arad S, Richmond A (2000) Extracellular polysaccharide production in outdoor mass cultures of Porphyridium sp. in flat plate glass reactors. J Appl Phycol 12:269–275CrossRefGoogle Scholar
  19. 19.
    Ramus J (1972) The production of extracellular polysaccharide by the unicellular red alga Porphyridium aerugineum. J Phycol 8:97–111Google Scholar
  20. 20.
    Wang C, Wen S, Ouyang F (1999) Optimization of culture conditions of Porphyridium cruentum. Eng Chem Metall 20:272–277Google Scholar
  21. 21.
    Jones RF, Speer HL, Kury W (1963) Studies on the Growth of the Red Alga Porphyridium cruentum. Physiol Plant 16:636–643CrossRefGoogle Scholar
  22. 22.
    Li Y, Ghasemi Naghdi F, Garg S, Adarme Vega TC, Thurecht KJ, Ghafor WA, Tannock S, Schenk PM (2014) A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microb Cell Factor 13:14CrossRefGoogle Scholar
  23. 23.
    Folch J, Lees M, Sloane-Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509Google Scholar
  24. 24.
    Biller P, Ross AB (2014) Pyrolysis GC–MS as a novel analysis technique to determine the biochemical composition of microalgae. Algal Res 6:91–97CrossRefGoogle Scholar
  25. 25.
    Jahn W, Steinbiss J, Zetsche K (1984) Light intensity adaptation of the phycobiliprotein content of the red alga Porphyridium. Planta 161:536–539CrossRefGoogle Scholar
  26. 26.
    You T, Barnett SM (2004) Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochem Eng J 19:251–258CrossRefGoogle Scholar
  27. 27.
    Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251CrossRefGoogle Scholar
  28. 28.
    Su G, Jiao K, Li Z, Guo X, Chang J, Ndikubwimana T, Sun Y, Zeng X, Lu Y, Lin L (2016) Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum. Bioprocess Biosyst Eng 39:1129–1136CrossRefGoogle Scholar
  29. 29.
    Chen T, Liu J, Guo B, Ma X, Sun P, Liu B, Chen F (2015) Light attenuates lipid accumulation while enhancing cell proliferation and starch synthesis in the glucose-fed oleaginous microalga Chlorella zofingiensis. Sci Rep 5:14936CrossRefGoogle Scholar
  30. 30.
    Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21CrossRefGoogle Scholar
  31. 31.
    Su G, Jiao K, Chang J, Li Z, Guo X, Sun Y, Zeng X, Lu Y, Lin L (2016) Enhancing total fatty acids and arachidonic acid production by the red microalgae Porphyridium purpureum. Bioresour Bioprocess 3:1–9CrossRefGoogle Scholar
  32. 32.
    Durmaz Y, Monteiro M, Bandarra N, Gökpinar Ş, Işik O (2007) The effect of low temperature on fatty acid composition and tocopherols of the red microalgae Porphyridium cruentum. J Appl Phycol 19:223–227CrossRefGoogle Scholar
  33. 33.
    Cohen Z, Vonshak A, Richmond A (1988) Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to grwoth rate. J Phycol 24:328–332Google Scholar
  34. 34.
    Haines TH (1973) Sulfolipids and halosulfolipids—lipids and biomembranes of eukaryotic microorganisms—Chapter 4. Academic Press, CambridgeGoogle Scholar
  35. 35.
    Stumpf PK (1984) Chapter 6 fatty acid biosynthesis in higher plants. Elsevier B.V., AmsterdamCrossRefGoogle Scholar
  36. 36.
    Khozin I, Adlerstein D, Bigongo C, Heimer YM, Cohen Z (1997) Elucidation of the biosynthesis of eicosapentaenoic acid in the microalga Porphyridium cruentum (II. studies with radiolabeled precursors). Plant Physiol 114:223–230CrossRefGoogle Scholar
  37. 37.
    Shiran D, Khozin I, Heimer YM, Cohen Z (1996) Biosynthesis of eicosapentaenoic acid in the microalga Porphyridium cruentum. I: the use of externally supplied fatty acids. Lipids 31:1277–1282CrossRefGoogle Scholar
  38. 38.
    Khozin I, Adlerstein D, Bigogno C, Cohen Z (1997) Elucidation of the biosynthesis of eicosapentaenoic acid (EPA) in the microalga Porphyridium Cruentum. In: Williams JP, Khan MU, Lem NW (eds) Physiology, biochemistry and molecular biology of plant lipids. Springer, DordrechtGoogle Scholar
  39. 39.
    Sato N, Moriyama T, Mori N, Toyoshima M (2017) Lipid metabolism and potentials of biofuel and high added-value oil production in red algae. World J Microbiol Biotechnol 33:74CrossRefGoogle Scholar
  40. 40.
    Su G, Guo X, Chang J, Liu X, Zeng X, Sun Y, Lin L (2015) Effect of 6-benzylaminopurine (6-BA) on cell growth and fatty acids biosynthesis of microglage Porphyridium Purpureum. J XM Univ (Nat Sci) 54:790–795Google Scholar
  41. 41.
    Imaizumi Y, Nagao N, Yusoff FM, Taguchi S, Toda T (2014) Estimation of optimum specific light intensity per cell on a high-cell-density continuous culture of Chlorella zofingiensis not limited by nutrients or CO2. Bioresour Technol 162:53–59CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jingyu Chang
    • 1
  • Kai Le
    • 1
  • Xiaoqiang Song
    • 1
  • Kailin Jiao
    • 1
  • Xianhai Zeng
    • 1
    • 4
  • Xueping Ling
    • 2
  • Tuo Shi
    • 3
  • Xing Tang
    • 1
    • 4
  • Yong Sun
    • 1
    • 4
  • Lu Lin
    • 1
    • 4
  1. 1.College of EnergyXiamen UniversityXiamenPeople’s Republic of China
  2. 2.Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenPeople’s Republic of China
  3. 3.State Key Laboratory of Marine Environmental Science, College of Ocean and Earth SciencesXiamen UniversityXiamenPeople’s Republic of China
  4. 4.Xiamen Key Laboratory of High-valued Conversion Technology of Agricultural BiomassXiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations