Advertisement

Bioprocess and Biosystems Engineering

, Volume 40, Issue 11, pp 1611–1619 | Cite as

Production of rhamnolipids by semi-solid-state fermentation with Pseudomonas aeruginosa RG18 for heavy metal desorption

  • Jianrong Wu
  • Jingbo Zhang
  • Panpan Wang
  • Li Zhu
  • Minjie Gao
  • Zhiyong Zheng
  • Xiaobei ZhanEmail author
Research Paper

Abstract

Foaming problem and cost of substrate limit the commercial application of rhamnolipids, a potential biosurfactant produced by Pseudomonas aeruginosa. We explored the production of rhamnolipids by a semi-solid-state (SSS) fermentation strategy with glycerol as carbon source and rapeseed/wheat bran as matrix, along with the capacity of the produced rhamnolipids to solubilize lead and cadmium in aqueous solution. Structural analysis by MALDI-TOF MS indicated the increased proportion of mono-rhamnolipids from SSS fermentation. E24 results showed the stronger emulsification capacity and reduced water tension of the SSS fermentation product. Rhamnolipids from SSS fermentation can desorb lead/cadmium from contaminated soil effectively and heavy metals in exchangeable and carbonate forms were easily removed. Our findings suggest that SSS fermentation is an alternative for the economical production of rhamnolipids and the product can be used to solubilize heavy metals from soils.

Keywords

Rhamnolipids Semi-solid-state fermentation Emulsification capacity Heavy metal desorption 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China Nos. 31201384 and 31271888, the National High-tech R&D Program of China No. 2012AA021505, the Program of Introducing Talents of Discipline to Universities (111-2-06), the Fundamental Research Funds for the Central Universities (JUSRP51632A), the Industry Education Research Cooperation Project of Jiangsu Province (BY2016022-15).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Zhao F, Shi R, Zhao J, Li G, Bai X, Han S, Zhang Y (2014) Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery. J Appl Microbiol 118:379–389CrossRefGoogle Scholar
  2. 2.
    Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198CrossRefGoogle Scholar
  3. 3.
    Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F, Sorokin A, Renault JH, Kauffmann S, Pugin A, Clement C, Baillieul F, Dorey S (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 32:178–193CrossRefGoogle Scholar
  4. 4.
    Henkela M, Müllera MM, Johannes H, Küglera JH, Lovaglio RB, Contiero J, Syldatk C, Hausmann R (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47:1207–1219CrossRefGoogle Scholar
  5. 5.
    Silva SNRL, Farias CBB, Rufino RD, Luna JM, Sarubbo LA (2010) Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf B Biointerfaces 79:174–183CrossRefGoogle Scholar
  6. 6.
    Leng L, Yuan X, Zeng G (2015) Rhamnolipid based glycerol-in-diesel microemulsion fuel: formation and characterization. Fuel 147:76–81CrossRefGoogle Scholar
  7. 7.
    Syldatk C, Lang S, Matulovic U, Wagner F (1985) Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z Naturforsch C 40:61–67Google Scholar
  8. 8.
    Guerra SLH, Käppeli O, Fiechter A (1986) Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol 24:443–448Google Scholar
  9. 9.
    Onwosi CO, Odibo FJC (2013) Rhamnolipid biosurfactant production by Pseudomonas nitroreducens immobilized on Ca2+ alginate beads and under resting cell condition. Ann Microbiol 63:161–165CrossRefGoogle Scholar
  10. 10.
    Fiechter A (1992) Integrated systems for biosurfactant synthesis. Pure Appl Chem 64:1739–1743CrossRefGoogle Scholar
  11. 11.
    Heyd M, Franzreb M (2011) Continuous rhamnolipid production with integrated product removal by foam fractionation and magnetic separation of immobilized Pseudomonas aeruginosa. Biotechnol Prog 27:706–716CrossRefGoogle Scholar
  12. 12.
    Pinzon NM, Cook AG, Ju LK (2013) Continuous rhamnolipid production using denitrifying Pseudomonas aeruginosa cells in hollow-fiber bioreactor. Biotechnol Prog 29:352–358CrossRefGoogle Scholar
  13. 13.
    Giani C, Wullbrandt D, Rothert R, Meiwes J (1997) Pseudomonas aeruginosa and its use in process for the biotechnological preparation of l-rhamnose. US patent, 5658793Google Scholar
  14. 14.
    Neto DC, Meira JA, de Araújo JM, Mitchell DA, Krieger N (2008) Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Appl Microbiol Biotechnol 81:441–448CrossRefGoogle Scholar
  15. 15.
    Soberon-Chavez G (ed) (2011) Biosurfactants, microbiology monographs, vol 20. Springer, Berlin, pp 17–21Google Scholar
  16. 16.
    Monteiro SA, Sassaki GL, de Souza LM, Meira JA, de Araújo JM, Mitchell DA, Ramos LP, Krieger N (2007) Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem Phys Lipids 147:1–13CrossRefGoogle Scholar
  17. 17.
    Rahman KS, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 18:1277–1281CrossRefGoogle Scholar
  18. 18.
    Price NP, Ray KJ, Vermillion K, Kuo TM (2009) MALDI-TOF mass spectrometry of naturally occurring mixtures of monorhamnolipids and dirhamnolipids. Carbohyd Res 344:204–209CrossRefGoogle Scholar
  19. 19.
    Venkatesh NM, Vedaraman N (2012) Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Ann Microbiol 62:85–91CrossRefGoogle Scholar
  20. 20.
    Tessier A, Campbell P, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851CrossRefGoogle Scholar
  21. 21.
    Prieto LM, Michelon M, Burkert JFM, Kalil SJ, Burkert CAV (2008) The production of rhamnolipid by a Pseudomonas aeruginosa strain isolated from a southern coastal zone in Brazil. Chemosphere 71:1781–1785CrossRefGoogle Scholar
  22. 22.
    Lotfabad TB, Shourian M, Roostaazad R, Adelzadeh MR, Noghabi KA (2009) An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf B Biointerfaces 69:183–193CrossRefGoogle Scholar
  23. 23.
    Rosa CFCD, Michelon M, Burkert JFD, Kalil SJ, Burkert CAV (2010) Production of a rhamnolipid-type biosurfactant by Pseudomonas aeruginosa LBM10 grown on glycerol. Afr J Biotechnol 9:9012–9017Google Scholar
  24. 24.
    Saikia RR, Deka S, Deka M, Sarma H (2012) Optimization of environmental factors for improved production of rhamnolipid biosurfactant by Pseudomonas aeruginosa RS29 on glycerol. J Basic Microbiol 52:446–457CrossRefGoogle Scholar
  25. 25.
    Özdemir G, Peker S, Helvaci SS (2004) Effect of pH on the surface and interfacial behavior of rhamnolipids R1 and R2. Colloid Surf A 234:135–143CrossRefGoogle Scholar
  26. 26.
    Gudina EJ, Rodrigues AI, Alves E, Domingues MR, Teixeira JA, Rodrigues LR (2015) Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresour Technol 177:87–93CrossRefGoogle Scholar
  27. 27.
    Pacwapłociniczak M, Płaza GA, Piotrowskaseget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654CrossRefGoogle Scholar
  28. 28.
    Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996–2002CrossRefGoogle Scholar
  29. 29.
    Bassi R, Prasher SO, Simpson BK (2000) Extraction of metals from a contaminated sandy soil using citric acid. Environ Prog 19:275–282CrossRefGoogle Scholar
  30. 30.
    Wan J, Meng D, Long T, Ying R, Ye M, Zhang S, Li Q, Zhou Y, Lin Y (2015) Simultaneous removal of lindane, lead and cadmium from soils by rhamnolipids combined with citric acid. PLoS ONE 10:e0129978CrossRefGoogle Scholar
  31. 31.
    Zhu L, Yang X, Xue C, Chen Y, Qu L, Lu W (2012) Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process. Bioresour Technol 117:208–213CrossRefGoogle Scholar
  32. 32.
    Onwosi C, Odibo F (2012) Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J Microbiol Biotechnol 28:937–942CrossRefGoogle Scholar
  33. 33.
    Oliveira FJS, Vazquez L, Campos NPD, França FPD (2009) Production of rhamnolipids by a Pseudomonas alcaligenes strain. Process Biochem 44:383–389CrossRefGoogle Scholar
  34. 34.
    Muller MM, Hormann B, Syldatk C, Hausmann R (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl Microbiol Biotechnol 87:167–174CrossRefGoogle Scholar
  35. 35.
    Benincasa M, Contiero J, Manresa MA, Moraes IO (2002) Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J Food Eng 54:283–288CrossRefGoogle Scholar
  36. 36.
    Gong ZJ, Peng YF, Wang QH (2015) Rhamnolipid production, characterization and fermentation scale-up by Pseudomonas aeruginosa with plant oils. Biotechnol Lett 37:2033–2038CrossRefGoogle Scholar
  37. 37.
    Linhardt RJ, Bakhit R, Daniels L, Mayerl F, Pickenhagen W (1989) Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng 33:365–368CrossRefGoogle Scholar
  38. 38.
    Abalos A, Maximo F, Manresa MA, Bastida J (2002) Utilization of response surface methodology to optimize the culture media for the production of rhamnolipids by Pseudomonas aeruginosa AT10. J Chem Technol Biotehnol 77:777–784CrossRefGoogle Scholar
  39. 39.
    Lan G, Fan Q, Liu Y, Chen C, Li G, Liu Y, Yin X (2015) Rhamnolipid production from waste cooking oil using Pseudomonas SWP-4. Biochem Eng J 101:44–54CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jianrong Wu
    • 1
  • Jingbo Zhang
    • 1
  • Panpan Wang
    • 1
  • Li Zhu
    • 1
  • Minjie Gao
    • 1
  • Zhiyong Zheng
    • 1
  • Xiaobei Zhan
    • 1
    Email author
  1. 1.Key Laboratory of Industrial Biotechnology of Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina

Personalised recommendations