Bioprocess and Biosystems Engineering

, Volume 40, Issue 10, pp 1493–1506 | Cite as

Cauliflower waste utilization for sustainable biobutanol production: revelation of drying kinetics and bioprocess development

  • Manisha A. Khedkar
  • Pranhita R. Nimbalkar
  • Prakash V. Chavan
  • Yogesh J. Chendake
  • Sandip B. BankarEmail author
Research Paper


Efficient yet economic production of biofuel(s) using varied second-generation feedstock needs to be explored in the current scenario to cope up with global fuel demand. Hence, the present study was performed to reveal the use of cauliflower waste for acetone–butanol–ethanol (ABE) production using Clostridium acetobutylicum NRRL B 527. The proximate analysis of cauliflower waste demonstrated to comprise 17.32% cellulose, 9.12% hemicellulose, and 5.94% lignin. Drying of cauliflower waste was carried out in the temperature range of 60–120 °C to investigate its effect on ABE production. The experimental drying data were simulated using moisture diffusion control model. The cauliflower waste dried at 80 °C showed maximum total sugar yield of 26.05 g L−1. Furthermore, the removal of phenolics, acetic acid, and total furans was found to be 90–97, 10–40, and 95–97%, respectively. Incidentally, maximum ABE titer obtained was 5.35 g L−1 with 50% sugar utilization.


Biobutanol Cauliflower waste Detoxification Drying Fermentation 



The authors gratefully acknowledge Department of Science and Technology (DST) of Ministry of Science and Technology, Government of India, for providing financial support under the scheme of DST INSPIRE faculty award, (IFA 13-ENG-68/July 28, 2014) during the course of this investigation. Authors are also thankful to Radhika Malkar and Manoj Kamble from Institute of Chemical Technology, Mumbai for their help in SEM analysis. Authors are also thankful to Akshay Khade from Bharati Vidyapeeth Deemed University College of Engineering, Pune, India, for his help in FTIR analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Bankar SB, Survase SA, Ojamo H, Granström T (2013) Biobutanol: the outlook of an academic and industrialist. RSC Adv 3:24734–24757CrossRefGoogle Scholar
  2. 2.
    Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioengg 97:1460–1469CrossRefGoogle Scholar
  3. 3.
    Maiti S, Gallastegui G, Sarma SJ, Brar SK, Bihan YL, Drogui P, Buelna G, Verma M (2016) A re-look at the biochemical strategies to enhance butanol production. Biomass Bioenerg 94:187–200CrossRefGoogle Scholar
  4. 4.
    Survase SA, Adriaan Van Heiningen GJ, Granström T (2011) Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423. Appl Microbiol Biotechnol 91:1305–1313CrossRefGoogle Scholar
  5. 5.
    Raganati F, Olivieri G, Götz P, Marzocchella A, Salatino P (2015) Butanol production from hexoses and pentoses by fermentation of Clostridium acetobutylicum. Anaerobe 34:146–155CrossRefGoogle Scholar
  6. 6.
    Chauhan S (2010) Biomass resources assessment for power generation: a case study from Haryana state, India. Biomass Bioenerg 34:1300–1308CrossRefGoogle Scholar
  7. 7.
    Dhillon GS, Bansal S, Oberoi HS (2007) Cauliflower waste incorporation into cane molasses improves ethanol production using Saccharomyces cerevisiae MTCC 178. Indian J Microbiol 47:353–357CrossRefGoogle Scholar
  8. 8.
    Oberoi HS, Kalra KL, Uppal DS, Tyagi SK (2007) Effects of different drying methods of cauliflower waste on drying time, colour retention and glucoamylase production by Aspergillus niger NCIM 1054. Int J Food Sci Technol 42:228–234CrossRefGoogle Scholar
  9. 9.
    Wadhwa M, Kaushal S, Bakshi MPS (2006) Nutritive evaluation of vegetable wastes as complete feed for goat bucks. Small Rumin Res 64:279–284CrossRefGoogle Scholar
  10. 10.
    Sharma R, Oberoi HS, Dhillon GS (2016) Fruit and vegetable processing waste: renewable feed stocks for enzyme production. In: Dhillon GS, Kaur S (eds) Agro-industrial wastes as feedstock for enzyme production, 1st edn. Academic Press, LondonGoogle Scholar
  11. 11.
    Madhumithah CG, Krithiga R, Sundaram S, Sasikumar CS, Guhathakurta S, Cherian KM (2011) Utilization of vegetable wastes for production of protease by solid state fermentation using Aspergillus niger. World J Agric Sci 7:550–555Google Scholar
  12. 12.
    Arun C, Sivashanmugam P (2015) Identification and optimization of parameters for the semi -continuous production of garbage enzyme from pre-consumer organic waste by green RP-HPLC method. Waste Manage 44:28–33CrossRefGoogle Scholar
  13. 13.
    Babbar N, Oberoi HS, Sandhu SK, Bhargav VK (2014) Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. J Food Sci Technol 51:2568–2575CrossRefGoogle Scholar
  14. 14.
    Gonzales GB, Smagghe G, Mackie A, Grootaert C, Bajka B, Rigby N, Raes K, Van Camp J (2015) Use of metabolomics and fluorescence recovery after photobleaching to study the bioavailability and intestinal mucus diffusion of polyphenols from cauliflower waste. J Funct Foods 16:403–413CrossRefGoogle Scholar
  15. 15.
    Gonzales GB, Smagghe G, Raes K, Van Camp J (2014) Combined alkaline hydrolysis and ultrasound-assisted extraction for the release of nonextractable phenolics from cauliflower (Brassica oleracea var. botrytis) Waste. J Agric Food Chem 62:3371–3376CrossRefGoogle Scholar
  16. 16.
    Baiano A, Bevilacqua L, Terracone C, Conto F, Nobile MAD (2014) Single and interactive effects of process variables on microwave-assisted and conventional extractions of antioxidants from vegetable solid wastes. J Food Engg 120:135–145CrossRefGoogle Scholar
  17. 17.
    Nguyen HT, Smagghe G, Gonzales GB, Van Camp J, Raes K (2014) Enzyme-assisted extraction enhancing the phenolic release from cauliflower (Brassica oleracea L. var. botrytis) outer leaves. J Agric Food Chem 62:7468–7476CrossRefGoogle Scholar
  18. 18.
    Mary GS, Sugumaran P, Niveditha S, Ramalakshmi B, Ravichandran P, Seshadri S (2016) Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int J Recycl Org Waste Agricult 5:43–53CrossRefGoogle Scholar
  19. 19.
    Angulo J, Mahecha L, Yepes SA, Yepes AM, Bustamante G, Jaramillo H, Valencia E, Villamil T, Gallo J (2012) Nutritional evaluation of fruit and vegetable waste as feedstuff for diets of lactating Holstein cows. J Environ Manage 95:210–214CrossRefGoogle Scholar
  20. 20.
    Bakshi MPS, Wadhwa M, Makkar HPS (2016) Waste to worth: vegetable wastes as animal feed. CAB Rev 11:012CrossRefGoogle Scholar
  21. 21.
    Katami T, Yasuhara A, Shibamoto T (2004) Formation of dioxins from incineration of fallen leaf. Bull Environ Contam Toxicol 72:114–118CrossRefGoogle Scholar
  22. 22.
    Ribeiro TC, Abreu JP, Freitas MCJ, Pumar M, Teodoro AJ (2015) Substitution of wheat flour with cauliflower flour in bakery products: effects on chemical, physical, antioxidant properties and sensory analyses. Int Food Res J 22:532–538Google Scholar
  23. 23.
    Kiranoudis CT, Maroulis ZB, Marinos-Kouris D (1995) Heat and mass transfer model building in drying with multiresponse data. Int J Heat Mass Trans 38:463–480CrossRefGoogle Scholar
  24. 24.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass. Technical Report, NREL/TP 510-42622Google Scholar
  25. 25.
    Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420–424CrossRefGoogle Scholar
  26. 26.
    Gao X, Kumar R, Wyman CE (2014) Fast hemicellulose quantification via a simple one-step acid hydrolysis. Biotechnol Bioengg 111:1088–1096CrossRefGoogle Scholar
  27. 27.
    Kirk TK, Obst JR (1988) Lignin determination. In: Wood WA, Kellogg ST (eds) Methods in enzymology—biomass, part b, lignin, pectin, and chitin, vol 161, 1st edn. Academic Press, San Diego, pp 87–101Google Scholar
  28. 28.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2011) Determination of structural carbohydrates and lignin in biomass, Technical Report, NREL/TP 510-42618Google Scholar
  29. 29.
    Baloch AB, Xia X, Sheikh SA (2015) Proximate and mineral compositions of dried cauliflower (Brassica oleracea l.) grown in Sindh, Pakistan. J Food Nutr Res 3:213–219CrossRefGoogle Scholar
  30. 30.
    Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon, OxfordGoogle Scholar
  31. 31.
    Falade KO, Solademi OJ (2010) Modeling of air drying of fresh and blanched sweet potato slices. Int J Food Sci Technol 45:278–288CrossRefGoogle Scholar
  32. 32.
    Kara C, Doymaz I (2014) Thin layer drying kinetics of by-products from pomegranate juice processing. J Food Process Preserv 39:480–487CrossRefGoogle Scholar
  33. 33.
    Hodge DB, Andersson C, Berglund KA, De UR (2009) Detoxification requirements for bioconversion of softwood dilute acid hydrolyzates to succinic acid. Enzyme Microb Technol 44:309–316CrossRefGoogle Scholar
  34. 34.
    Bankar SB, Survase SA, Ojamo H, Granström T (2013) The two stage immobilized column reactor with an integrated solvent recovery module for enhanced ABE production. Bioresour Technol 140:269–276CrossRefGoogle Scholar
  35. 35.
    Bankar SB, Survase SA, Singhal RS, Granström T (2012) Continuous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B 5313. Bioresour Technol 106:110–116CrossRefGoogle Scholar
  36. 36.
    Harde SM, Jadhav SB, Bankar SB, Ojamo H, Granström T, Singhal RS, Survase SA (2016) Acetone-butanol-ethanol fermentation using the root hydrolysate after extraction of forskolin from Coleus forskohlii. Renew Energ 86:594–601CrossRefGoogle Scholar
  37. 37.
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  38. 38.
    Maurya S, Singh D (2010) Quantitative analysis of total phenolic content in adhatoda vasicanees extracts. Int J Pharm Tech Res 2:2403–2406Google Scholar
  39. 39.
    Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnol Prog 16:637–641CrossRefGoogle Scholar
  40. 40.
    Perea-flores MJ, Garibay-febles V, Chanona-pérez JJ, Calderón-domínguez G, Méndez-méndez JV, Palacios-gonzález E, Gutiérrez-lópez GF (2012) Mathematical modeling of castor oil seeds (Ricinus communis) drying kinetics in fluidized bed at high temperatures. Ind Crop Prod 38:64–71CrossRefGoogle Scholar
  41. 41.
    Manjarres-pinzon K, Cortes-rodriguez M, Rodriguez-sandoval E (2013) Effect of drying conditions on the physical properties of impregnated orange peel. Braz J Chem Eng 30:667–676CrossRefGoogle Scholar
  42. 42.
    Motri S, Touil A, Zagrouba F (2013) Convective drying kinetics of prickly pear seeds. IOSR J Environ Sci Toxicol Food Technol 6:35–42CrossRefGoogle Scholar
  43. 43.
    Mudgal VD, Pande VK (2007) Dehydration characteristics of cauliflower. Intl J Food Engg 3:6Google Scholar
  44. 44.
    Varma AJ (2009) Pretreatment of plant biomass carbohydrates for ethanol production: an overview. Trends Carbohydr Res 1:10Google Scholar
  45. 45.
    Avila-Gaxiola E, Avila-Gaxiola J, Velarde-Escobar O, Ramos-Brito F, Atondo-Rubio G, Yee-Rendon C (2016) Effect of drying temperature on agave tequilana leaves: a pretreatment for releasing reducing sugars for biofuel production. J Food Proc Engg. doi/. doi: 10.1111/jfpe.12455/epdf Google Scholar
  46. 46.
    Su T-C, Fang Z, Zhang F, Luo J, Li X-K (2015) Hydrolysis of selected tropical plant wastes catalyzed by a magnetic carbonaceous acid with microwave. Sci Rep 5:17538. doi: 10.1038/srep17538 CrossRefGoogle Scholar
  47. 47.
    Singh S, Singh S, Trimukhe KD, Pandare KB, Bastawade KB, Gokhale DV, Varma AJ (2005) Lignin-carbohydrate complexes from sugarcane bagasse: preparation, purification, and characterization. Carbohydr Polym 62:57CrossRefGoogle Scholar
  48. 48.
    Ghaffar SH, Fan M (2013) Structural analysis for lignin characteristics in biomass straw”. Biomass Bioenergy 57:264CrossRefGoogle Scholar
  49. 49.
    Pal S, Joy S, Kumbhar P, Trimukhe KD, Varma AJ, Padmanabhan S (2016) Effect of mixed acid catalysis on pretreatment and enzymatic digestibility of sugar cane bagasse. Energ Fuels. doi: 10.1021/acs.energyfuels.6b01011 Google Scholar
  50. 50.
    Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:10CrossRefGoogle Scholar
  51. 51.
    Rodrigues RCLB, Felipe MGA, Silva JB, Almeida Vitolo M, Gómez PV (2001) The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation. Braz J Chem Engg 18:299–311CrossRefGoogle Scholar
  52. 52.
    Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP (2008) Butanol production by Clostridium beijerinckii Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99:5915–5922CrossRefGoogle Scholar
  53. 53.
    Yamamoto M, Iakovlev M, Bankar SB, Tunc MS, Van Heiningen A (2014) Enzymatic hydrolysis of hardwood and softwood harvest residue fibers released by sulfur dioxide-ethanol-water fractionation. Bioresour Technol 167:530–538CrossRefGoogle Scholar
  54. 54.
    Nilsson RL, Helmerius J, Nilsson RT, Sjöblom M, Hodge DB, Rova U (2015) Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch kraft black liquor. Bioresour Technol 176:71–79CrossRefGoogle Scholar
  55. 55.
    Amiri H, Karimi K (2016) Integration of autohydrolysis and organosolv delignification for efficient ABE production and lignin recovery. Ind Eng Chem Res 55:4836–4845CrossRefGoogle Scholar
  56. 56.
    Ibrahim MF, Suraini AA, Ezreeza M, Yusoff M, Phang LY, Hassan MA (2015) Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel. Renew Energy 77:447–455CrossRefGoogle Scholar
  57. 57.
    Linggang S, Phang LY, Wasoh H, Abd-Aziz S (2013) Acetone-butanol-ethanol production by Clostridium acetobutylicum ATCC 824 using sago pith residues hydrolysate. BioEnergy Res 6:321–328CrossRefGoogle Scholar
  58. 58.
    Cho DH, Shin SJ, Kim YH (2012) Effects of acetic and formic acid on ABE production by Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol Bioprocess Eng 17:270–275CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Manisha A. Khedkar
    • 1
  • Pranhita R. Nimbalkar
    • 1
  • Prakash V. Chavan
    • 1
  • Yogesh J. Chendake
    • 1
  • Sandip B. Bankar
    • 1
    • 2
    Email author
  1. 1.Department of Chemical EngineeringBharati Vidyapeeth Deemed University College of EngineeringPuneIndia
  2. 2.Department of Bioproducts and BiosystemsAalto University School of Chemical EngineeringAaltoFinland

Personalised recommendations