Advertisement

Bioprocess and Biosystems Engineering

, Volume 40, Issue 5, pp 683–691 | Cite as

Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents

  • Sun-Ki Kim
  • Jung-Hyun Jo
  • Yong-Su Jin
  • Jin-Ho SeoEmail author
Research Paper

Abstract

Construction of robust and efficient yeast strains is a prerequisite for commercializing a biofuel production process. We have demonstrated that high intracellular spermidine (SPD) contents in Saccharomyces cerevisiae can lead to improved tolerance against various fermentation inhibitors, including furan derivatives and acetic acid. In this study, we examined the potential applicability of the S. cerevisiae strains with high SPD contents under two cases of ethanol fermentation: glucose fermentation in repeated-batch fermentations and xylose fermentation in the presence of fermentation inhibitors. During the sixteen times of repeated-batch fermentations using glucose as a sole carbon source, the S. cerevisiae strains with high SPD contents maintained higher cell viability and ethanol productivities than a control strain with lower SPD contents. Specifically, at the sixteenth fermentation, the ethanol productivity of a S. cerevisiae strain with twofold higher SPD content was 31% higher than that of the control strain. When the SPD content was elevated in an engineered S. cerevisiae capable of fermenting xylose, the resulting S. cerevisiae strain exhibited much 40–50% higher ethanol productivities than the control strain during the fermentations of synthetic hydrolysate containing high concentrations of fermentation inhibitors. These results suggest that the strain engineering strategy to increase SPD content is broadly applicable for engineering yeast strains for robust and efficient production of ethanol.

Keywords

Biofuels Spermidine Xylose Repeated-batch fermentation Inhibitor tolerance 

Notes

Acknowledgements

This research was supported by The Advanced Biomass R&D Center (ABC) of Korea Grant (2011–0031359) and The National Research Foundation of Korea Grant (2013M1A2A2072600) funded by the Ministry of Science, ICT and Future Planning and Technology.

References

  1. 1.
    Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508CrossRefGoogle Scholar
  2. 2.
    Yangcheng HY, Jiang HX, Blanco M, Jane JL (2013) Characterization of normal and waxy corn starch for bioethanol production. J Agric Food Chem 61:379–386CrossRefGoogle Scholar
  3. 3.
    Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105CrossRefGoogle Scholar
  4. 4.
    Verbelen PJ, Saerens SMG, Van Mulders SE, Delvaux F, Delvaux FR (2009) The role of oxygen in yeast metabolism during high cell density brewery fermentations. Appl Microbiol Biotechnol 82:1143–1156CrossRefGoogle Scholar
  5. 5.
    Pereira FB, Gomes DG, Guimares PMR, Teixeira JA, Domingues L (2012) Cell recycling during repeated very high gravity bio-ethanol fermentations using the industrial Saccharomyces cerevisiae strain PE-2. Biotechnol Lett 34:45–53CrossRefGoogle Scholar
  6. 6.
    Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OVC, Missawa SK, Galzerani F, Costa GGL, Vidal RO, Noronha MF, Dominska M, Andrietta MGS, Andrietta SR, Cunha AF, Gomes LH, Tavares FCA, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GAG (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19:2258–2270CrossRefGoogle Scholar
  7. 7.
    Maristela Freitas SP, Laluce C (1998) Ethanol tolerance of thermotolerant yeasts cultivated on mixtures of sucrose and ethanol. J Ferment Bioeng 85:388–397CrossRefGoogle Scholar
  8. 8.
    Kim SK, Jin YS, Choi IG, Park YC, Seo JH (2015) Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents. Metab Eng 29:46–55CrossRefGoogle Scholar
  9. 9.
    Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Frohlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314CrossRefGoogle Scholar
  10. 10.
    Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349CrossRefGoogle Scholar
  11. 11.
    Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556CrossRefGoogle Scholar
  12. 12.
    Demeke MM, Dumortier F, Li YY, Broeckx T, Foulquie-Moreno MR, Thevelein JM (2013) Combining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol Biofuels 6:120CrossRefGoogle Scholar
  13. 13.
    Smith J, van Rensburg E, Gorgens JF (2014) Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnol 14:41CrossRefGoogle Scholar
  14. 14.
    Kim SR, Ha SJ, Kong II, Jin YS (2012) High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 14:336–343CrossRefGoogle Scholar
  15. 15.
    Hosaka K, Nikawa J, Kodaki T, Yamashita S (1992) A dominant mutation that alters the regulation of INO1 expression in Saccharomyces cerevisiae. J Biochem 111:352–358CrossRefGoogle Scholar
  16. 16.
    Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, Jin YS (2013) Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. Plos One 8:2CrossRefGoogle Scholar
  17. 17.
    Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81CrossRefGoogle Scholar
  18. 18.
    Park SE, Koo HM, Park YK, Park SM, Park JC, Lee OK, Park YC, Seo JH (2011) Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae. Bioresour Technol 102:6033–6038CrossRefGoogle Scholar
  19. 19.
    Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD (2006) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71:339–349CrossRefGoogle Scholar
  20. 20.
    Almeida JRM, Roder A, Modig T, Laadan B, Liden G, Gorwa-Grauslund MF (2008) NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 78:939–945CrossRefGoogle Scholar
  21. 21.
    Nogae I, Johnston M (1990) Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene 96:161–169CrossRefGoogle Scholar
  22. 22.
    Verduyn C, Vankleef R, Frank J, Schreuder H, Vandijken JP, Scheffers WA (1985) Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J 226:669–677CrossRefGoogle Scholar
  23. 23.
    Palmqvist E, Grage H, Meinander NQ, Hahn-Hagerdal B (1999) Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng 63:46–55CrossRefGoogle Scholar
  24. 24.
    Aguilar R, Ramirez JA, Garrote G, Vazquez M (2002) Kinetic study of the acid hydrolysis of sugar cane bagasse. J Food Eng 55:309–318CrossRefGoogle Scholar
  25. 25.
    Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386CrossRefGoogle Scholar
  26. 26.
    Almeida JRM, Bertilsson M, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF (2009) Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Appl Microbiol Biotechnol 84:751–761CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sun-Ki Kim
    • 1
  • Jung-Hyun Jo
    • 1
  • Yong-Su Jin
    • 2
    • 3
  • Jin-Ho Seo
    • 1
    Email author
  1. 1.Department of Agricultural Biotechnology and Center for Food and BioconvergenceSeoul National UniversitySeoulKorea
  2. 2.Department of Food Science and Human NutritionUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations