Advertisement

Bioprocess and Biosystems Engineering

, Volume 40, Issue 5, pp 675–681 | Cite as

Metabolic engineering of Bacillus subtilis for biosynthesis of heparosan using heparosan synthase from Pasteurella multocida, PmHS1

  • Xiaofei Chen
  • Rong Chen
  • Xiaoxiao Yu
  • Dongyang Tang
  • Wenbing YaoEmail author
  • Xiangdong GaoEmail author
Research Paper

Abstract

Heparosan, the capsular polysaccharide discovered in many pathogenic bacteria, is a promising material for heparin preparation. In this study, the Pasteurella multocida heparosan synthase 1 (PmHS1) module was used to synthesize heparosan with controlled molecular weight, while tuaD/gtaB module or gcaD module was responsible for UDP-precursors production in Bacillus subtilis 168. After metabolic pathway optimization, the yield of heparosan was as high as 237.6 mg/L in strain containing PmHS1 module and tuaD/gtaB module, which indicated that these two modules were key factors in heparosan production. The molecular weight of heparosan varied from 39 to 53 kDa, which indicated that heparosan molecular weight could be adjusted by the amount of PmHS1 and the ratio of two UDP precursors. The results showed that it would be possible to produce safe heparosan with appropriate molecular weight which is useful in heparin production.

Keywords

Heparosan Metabolic engineering Molecular weight control Recombinant Bacillus subtilis 

Notes

Acknowledgments

This work was financially supported by the Major National Science and Technology Project of China for Significant New Drugs Creation (2012ZX09502001-004), the Innovative Scientific Research Team Fund of Jiangsu Province and PAPD (A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions).

References

  1. 1.
    DeAngelis PL, White CL (2002) Identification and molecular cloning of a heparosan synthase from Pasteurella multocida type D. J Biol Chem 277:7209–7213CrossRefGoogle Scholar
  2. 2.
    Zhang Z, McCallum SA, Xie J, Nieto L, Corzana F, Jimenez-Barbero J, Chen M, Liu J, Linhardt RJ (2008) Solution structures of chemoenzymatically synthesized heparin and its precursors. J Am Chem Soc 130:12998–13007CrossRefGoogle Scholar
  3. 3.
    Chen JH, Jones CL, Liu J (2007) Using an enzymatic combinatorial approach to identify anticoagulant heparan sulfate structures. Chem Biol 14:986–993CrossRefGoogle Scholar
  4. 4.
    Capila I, Linhardt RJ (2002) Heparin-protein interactions. Angew Chem Int Ed 41:390–412CrossRefGoogle Scholar
  5. 5.
    Teng L, Fu H, Wang M, Deng C, Song Z, Chen J (2015) Immunomodulatory activity of heparan sulfate mimetics from Escherichia coli K5 capsular polysaccharide in vitro. Carbohydr Polym 115:643–650CrossRefGoogle Scholar
  6. 6.
    Chen JX, Zhang M, Liu W, Lu GZ, Chen JH (2014) Construction of serum resistant micelles based on heparosan for targeted cancer therapy. Carbohydr Polym 110:135–141CrossRefGoogle Scholar
  7. 7.
    Chen JX, Liu W, Zhang M, Chen JH (2014) Heparosan based negatively charged nanocarrier for rapid intracellular drug delivery. Int J Pharm 473:493–500CrossRefGoogle Scholar
  8. 8.
    Chandarajoti K, Xu Y, Sparkenbaugh E, Key NS, Pawlinski R, Liu J (2014) De novo synthesis of a narrow size distribution low-molecular-weight heparin. Glycobiology 24:476–486CrossRefGoogle Scholar
  9. 9.
    Chavaroche AA, van den Broek LA, Eggink G (2013) Production methods for heparosan, a precursor of heparin and heparan sulfate. Carbohydr Polym 93:38–47CrossRefGoogle Scholar
  10. 10.
    Chavaroche AA, Springer J, Kooy F, Boeriu C, Eggink G (2010) In vitro synthesis of heparosan using recombinant Pasteurella multocida heparosan synthase PmHS2. Appl Microbiol Biotechnol 85:1881–1891CrossRefGoogle Scholar
  11. 11.
    Zhang C, Liu L, Teng L, Chen J, Liu J, Li J, Du G, Chen J (2012) Metabolic engineering of Escherichia coli BL21 for biosynthesis of heparosan, a bioengineered heparin precursor. Metab Eng 14:521–527CrossRefGoogle Scholar
  12. 12.
    Kane TA, White CL, DeAngelis PL (2006) Functional characterization of PmHS1, a Pasteurella multocida heparosan synthase. J Biol Chem 281:33192–33197CrossRefGoogle Scholar
  13. 13.
    Jin P, Zhang L, Yuan P, Kang Z, Du G, Chen J (2016) Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. Carbohydr Polym 140:424–432CrossRefGoogle Scholar
  14. 14.
    Widner B, Behr R, Von Dollen S, Tang M, Heu T, Sloma A, Sternberg D, Deangelis PL, Weigel PH, Brown S (2005) Hyaluronic acid production. Bacillus subtilis. Appl Environ Microbiol 71:3747–3752CrossRefGoogle Scholar
  15. 15.
    Lewis PJ, Marston AL (1999) GFP vectors for controlled expression and dual labelling of protein fusions. Bacillus Subtilis Gene 227:101–109CrossRefGoogle Scholar
  16. 16.
    Chavaroche AA, van den Broek LA, Springer J, Boeriu C, Eggink G (2011) Analysis of the polymerization initiation and activity of Pasteurella multocida heparosan synthase PmHS2, an enzyme with glycosyltransferase and UDP-sugar hydrolase activity. J Biol Chem 286:1777–1785CrossRefGoogle Scholar
  17. 17.
    Wang Z, Ly M, Zhang F, Zhong W, Suen A, Hickey AM, Dordick JS, Linhardt RJ (2010) E. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor. Biotechnol Bioeng 107:964–973CrossRefGoogle Scholar
  18. 18.
    Yang X, Zhao Y, Wang Q, Wang H, Mei Q (2005) Analysis of the monosaccharide components in Angelica polysaccharides by high performance liquid chromatography. Anal Sci 21:1177–1180CrossRefGoogle Scholar
  19. 19.
    Liu H, Zhang Z, Linhardt RJ (2009) Lessons learned from the contamination of heparin. Nat Prod Rep 26:313–321CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingPeople’s Republic of China

Personalised recommendations