Advertisement

Bioprocess and Biosystems Engineering

, Volume 40, Issue 4, pp 643–650 | Cite as

Determination of kinetics and heat of hydrolysis for non-homogenous substrate by isothermal calorimetry

  • D. Tafoukt
  • A. Soric
  • J.-C. Sigoillot
  • J.-H. FerrasseEmail author
Research Paper

Abstract

The competitiveness of the second-generation bioethanol by biotechnological process requires an effective and quantitative control of biochemical reactions. In this study, the potential of isothermal calorimetry technique to measure heat and kinetics of a non-homogeneous substrate enzymatic hydrolysis is intended. Using this technique, optimum temperature of the enzymes used for lignocellulosic molecules hydrolysis was determined. Thus, the amount of substrate-to-enzyme ratio was highlighted as an important parameter of the hydrolysis yield. Furthermore, a new enzymes’ cocktail efficiency consisting of a mix of cellulases and cellobiose dehydrogenase (CDH) was qualified by this technique. The results showed that this cocktail allowed the production of a high amount of gluconic acid that could improve the attractiveness of these second-generation biofuels. From the set of experiments, the hydrolysis heat of wheat straw was derived and a meaningful value of −32.2 ± 3.2 J g−1 (gram reducing sugars product) is calculated. Then, isothermal measurements were used to determine kinetic constants of the cellulases and CDH mix on wheat straw. Results showed that this enzyme cocktail has an optimal rate at 45 °C in the range of temperatures tested (40–55 °C).

Keywords

Biofuel Enzymes Hydrolysis Cellulase Cellobiose dehydrogenase 

Abbreviations

CDH

Cellobiose dehydrogenase

Keq

Equilibrium constant

H

Enthalpy

w

Weight

Km

Michaelis–Menten constant

VM

Maximum reaction rate

Q

Exchanged heat

V

Volume

r

Reaction rate

[S]

Substrate concentration at time t

[S]0

Substrate concentration at time 0

t

Time

Notes

Acknowledgements

This research was funded by the Council of the PACA Region in the frame of MOTBIO project. The authors would like to thank the Research Federation ECCOREV for partially financing this work. The authors are grateful to Simeng ZHOU from Biotechnology of Filamentous Fungi laboratory—Aix Marseille Université, INRA, UMR 1163, for biochemical analyses.

References

  1. 1.
    Han M, Moon S-K, Choi G-W (2014) Pretreatment solution recycling and high-concentration output for economical production of bioethanol. Bioprocess Biosyst Eng 37(11):2205–2213CrossRefGoogle Scholar
  2. 2.
    Sun Y, Cheng J (2001) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRefGoogle Scholar
  3. 3.
    Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861CrossRefGoogle Scholar
  4. 4.
    Ahn DJ, Kim SK, Yun HS (2011) Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae. Bioprocess Biosyst Eng 35(1–2):35–41Google Scholar
  5. 5.
    Cook C, Devoto A (2011) Fuel from plant cell walls: recent developments in second generation bioethanol research. J Sci Food Agric 91(10):1729–1732CrossRefGoogle Scholar
  6. 6.
    Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467CrossRefGoogle Scholar
  7. 7.
    Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13(2–3):169–179CrossRefGoogle Scholar
  8. 8.
    Wang L, Sharifzadeh M, Templer R, Murphy RJ (2013) Bioethanol production from various waste papers: economic feasibility and sensitivity analysis. Appl Energy 111:1172–1182CrossRefGoogle Scholar
  9. 9.
    Ergün BG, Çalık P (2015) Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess Biosyst Eng 39(1):1–36CrossRefGoogle Scholar
  10. 10.
    Wiman M, Dienes D, Hansen MAT, van der Meulen T, Zacchi G, Lidén G (2012) Cellulose accessibility determines the rate of enzymatic hydrolysis of steam-pretreated spruce. Bioresour Technol 126:208–215CrossRefGoogle Scholar
  11. 11.
    García JC, Díaz MJ, Garcia MT, Feria MJ, Gómez DM, López F (2013) Search for optimum conditions of wheat straw hemicelluloses cold alkaline extraction process. Biochem Eng J 71:127–133CrossRefGoogle Scholar
  12. 12.
    Zhu Z, Zhu M, Wu Z (2012) Pretreatment of sugarcane bagasse with NH4OH–H2O2 and ionic liquid for efficient hydrolysis and bioethanol production. Bioresour Technol 119:199–207CrossRefGoogle Scholar
  13. 13.
    Bianconi ML (2007) Calorimetry of enzyme-catalyzed reactions. Biophys Chem 126(1–3):59–64CrossRefGoogle Scholar
  14. 14.
    Baranauskienė L, Petrikaitė V, Matulienė J, Matulis D (2009) Titration calorimetry standards and the precision of isothermal titration calorimetry data. Int J Mol Sci 10(6):2752–2762CrossRefGoogle Scholar
  15. 15.
    Soric A, Ferrasse J-H, Roche N (2011) Microcalorimetric qualitative analysis of biofilm development in porous media used in wastewater treatment by constructed wetland. J Therm Anal Calorim 104(1):113–118CrossRefGoogle Scholar
  16. 16.
    Karthikeyan R, Surianarayanan M, Sudharshan S, Gunasekaran P, Asit Baran M (2011) Biocalorimetric and respirometric studies on production of Penicillin G acylase from Bacillus badius pac in E. coli DH5α. Biochem Eng J 55(3):223–229CrossRefGoogle Scholar
  17. 17.
    James AM (2013) Thermal and energetic studies of cellular biological systems. Butterworth-HeinemannGoogle Scholar
  18. 18.
    Sivaprakasam S, Mahadevan S, Sekar S (2008) Calorimetric on-line monitoring of proteolytic activity of P. aeruginosa cultivated in a bench-scale biocalorimeter. Biochem Eng J 39(1):149–156CrossRefGoogle Scholar
  19. 19.
    Braissant O, Wirz D, Göpfert B, Daniels AU (2010) Biomedical use of isothermal microcalorimeters. Sensors 10(10):9369–9383CrossRefGoogle Scholar
  20. 20.
    Braissant O, Bonkat G, Wirz D, Bachmann A (2013) Microbial growth and isothermal microcalorimetry: growth models and their application to microcalorimetric data. Thermochim Acta 555:64–71CrossRefGoogle Scholar
  21. 21.
    Hansen LD, Christensen JJ, Izatt RM (1965) Entropy titration. A calorimetric method for the determination of ΔG°(K), ΔH° and ΔS°. Chem Commun Lond 3:36–38Google Scholar
  22. 22.
    Underdown DR, Yun Sock Sung, Bear JL (1974) The thermodynamics of nickel malonate formation in water–dioxane mixtures. J Inorg Nucl Chem 36(9):2043–2046CrossRefGoogle Scholar
  23. 23.
    Baumann MJ, Murphy L, Lei N, Krogh KBRM, Borch K, Westh P (2011) Advantages of isothermal titration calorimetry for xylanase kinetics in comparison to chemical-reducing-end assays. Anal Biochem 410(1):19–26CrossRefGoogle Scholar
  24. 24.
    Lonhienne T, Gerday C, Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543(1):1–10CrossRefGoogle Scholar
  25. 25.
    Siddiqui KS, Ertan H, Charlton T, Poljak A, Daud Khaled AK, Yang X, Marshall G, Cavicchioli R (2014) Versatile peroxidase degradation of humic substances: use of isothermal titration calorimetry to assess kinetics, and applications to industrial wastes. J Biotechnol 178:1–11CrossRefGoogle Scholar
  26. 26.
    Murphy L, Borch K, McFarland KC, Bohlin C, Westh P (2010) A calorimetric assay for enzymatic saccharification of biomass. Enzyme Microb Technol 46(2):141–146CrossRefGoogle Scholar
  27. 27.
    Bey M, Berrin J-G, Poidevin L, Sigoillot J-C (2011) Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes. Microb Cell Factor 10(1):113CrossRefGoogle Scholar
  28. 28.
    Navarro D, Couturier M, da Silva GGD, Berrin J-G, Rouau X, Asther M, Bignon C (2010) Automated assay for screening the enzymatic release of reducing sugars from micronized biomass. Microb Cell Factor 9:58CrossRefGoogle Scholar
  29. 29.
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428CrossRefGoogle Scholar
  30. 30.
    Forsberg Z, Vaaje-Kolstad G, Westereng G, Bunæs AC, Stenstrøm Y, MacKenzie A, Sørlie M, Horn SJ, Eijsink VGH (2011) Cleavage of cellulose by a CBM33 protein. Protein Sci 20:1479–1483CrossRefGoogle Scholar
  31. 31.
    Larson D (2015) Clinical chemistry: fundamentals and laboratory techniques. Elsevier, AmsterdamGoogle Scholar
  32. 32.
    Todd MJ, Gomez J (2001) Enzyme kinetics determined using calorimetry: a general assay for enzyme activity? Anal Biochem 296(2):179–187CrossRefGoogle Scholar
  33. 33.
    Tewari YB, Goldberg RN (1989) Thermodynamics of hydrolysis of disaccharides. Cellobiose, gentiobiose, isomaltose, and maltose. J Biol Chem 264(7):3966–3971Google Scholar
  34. 34.
    Jeoh T, Baker JO, Ali MK, Himmel ME, Adney WS (2005) β-d-Glucosidase reaction kinetics from isothermal titration microcalorimetry. Anal Biochem 347(2):244–253CrossRefGoogle Scholar
  35. 35.
    Illanes A (2008) Enzyme biocatalysis: principles and applications. Springer, BerlinCrossRefGoogle Scholar
  36. 36.
    Gautam SP, Bundela PS, Pandey AK, Khan J, Awasthi MK, Sarsaiya S (2011) Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol Res Int 2011:810425CrossRefGoogle Scholar
  37. 37.
    Robert D, Vian B (2004) Éléments de biologie cellulaire. DoinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Aix Marseille Univ, CNRS, Centrale Marseille, M2P2MarseilleFrance
  2. 2.Aix Marseille Univ, INRA, BBFMarseilleFrance

Personalised recommendations