Bioprocess and Biosystems Engineering

, Volume 40, Issue 3, pp 395–402 | Cite as

Use of saline waste water from demineralization of cheese whey for cultivation of Schizochytrium limacinum PA-968 and Japonochytrium marinum AN-4

  • Tomas Humhal
  • Petr Kastanek
  • Zuzana Jezkova
  • Anna Cadkova
  • Jana Kohoutkova
  • Tomas Branyik
Research Paper


Saline waste water from demineralization of cheese whey was used as the main component of waste saline medium (WSM) for cultivation of thraustochytrids. The suitability of WSM for cultivation of Schizochytrium limacinum PA-968 and Japonochytrium marinum AN-4 was evaluated by comparison with cultivation on nutrient medium (NM) in shake flask and fermenter cultures. Biomass productivities achieved in WSM for the thraustochytrids were comparable with those in NM for both shake flask and fermenter cultures. The maximum total lipid content (56.71% dry cell weight) and docosahexaenoic acid productivity (0.86 g/L/day) were achieved by J. marinum AN-4 grown on WSM in shake flask and fermenter cultures, respectively. A cost estimate of WSM suggests that this medium could result in lower production costs for thraustochytrid biomass and lipids and contribute to the effective reduction in saline diary process waste water.


Saline waste water Schizochytrium limacinum Japonochytrium marinum Docosahexaenoic acid Shake flask Bioreactor 


  1. 1.
    IDF (2010) The world dairy situation. Bulletin of the International Dairy Federation (446/2010), Brussels, Belgium, pp 181–182Google Scholar
  2. 2.
    Diblíková L, Čurda L, Kinčl J (2013) The effect of dry matter and salt addition on cheese whey demineralisation. Int Dairy J. doi:10.1016/j.idairyj.2012.12.008 Google Scholar
  3. 3.
    Gernigon G, Schuck P, Jeantet R, Burling H (2011) Encyclopedia of dairy sciences, 2nd edn. Elsevier Applied Science, LondonGoogle Scholar
  4. 4.
    Board WE (2015) World Register of Marine Species (WoRMS) Accessed 07 Sept 2016
  5. 5.
    Honda D, Yokochi T, Nakahara T, Erata M, Higashihara T (1998) Schizochytrium limacinum sp. nov., a new thraustochytrid from a mangrove area in the west Pacific Ocean. Mycol Res. doi:10.1017/S0953756297005170 Google Scholar
  6. 6.
    Luy M, Rusing M (2007) Process for cultivating microorganisms of the genus Thraustochytriales. United States Patent, 13US 2007/0141686 A1Google Scholar
  7. 7.
    Dewapriya P, S-k Kim (2014) Marine microorganisms: an emerging avenue in modern nutraceuticals and functional foods. Food Res Int. doi:10.1016/j.foodres.2013.12.022 Google Scholar
  8. 8.
    Lee Chang KJ, Nichols CM, Blackburn SI, Dunstan GA, Koutoulis A, Nichols PD (2014) Comparison of Thraustochytrids Aurantiochytrium sp., Schizochytrium sp., Thraustochytrium sp., and Ulkenia sp. for production of biodiesel, long-chain omega-3 oils, and exopolysaccharide. Mar Biotechnol. doi:10.1007/s10126-014-9560-5 Google Scholar
  9. 9.
    Singh P, Liu Y, Li L, Wang G (2014) Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats. Appl Microbiol Biot. doi:10.1007/s00253-014-5780-x Google Scholar
  10. 10.
    Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem. doi:10.1016/j.procbio.2007.08.008 Google Scholar
  11. 11.
    Chang G, Gao N, Tian G, Wu Q, Chang M, Wang X (2013) Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresour Technol. doi:10.1016/j.biortech.2013.04.107 Google Scholar
  12. 12.
    Pyle DJ, Garcia RA, Wen Z (2008) Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem. doi:10.1021/jf800602s Google Scholar
  13. 13.
    Ethier S, Woisard K, Vaughan D, Wen Z (2011) Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol. doi:10.1016/j.biortech.2010.05.021 Google Scholar
  14. 14.
    Scott SD, Armenta RE, Berryman KT, Norman AW (2011) Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid. Enzyme Microb Technol. doi:10.1016/j.enzmictec.2010.11.008 Google Scholar
  15. 15.
    Thyagarajan T, Puri M, Vongsvivut J, Barrow CJ (2014) Evaluation of bread crumbs as a potential carbon source for the growth of thraustochytrid species for oil and omega-3 production. Nutrients. doi:10.3390/nu6052104 Google Scholar
  16. 16.
    Quilodrán B, Hinzpeter I, Hormazabal E, Quiroz A, Shene C (2010) Docosahexaenoic acid (C22:6n-3, DHA) and astaxanthin production by Thraustochytriidae sp. AS4-A1 a native strain with high similitude to Ulkenia sp.: Evaluation of liquid residues from food industry as nutrient sources. Enzyme Microb Tech. doi:10.1016/j.enzmictec.2010.04.002 Google Scholar
  17. 17.
    Liang Y, Sarkany N, Cui Y, Yesuf J, Trushenski J, Blackburn JW (2010) Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour Technol. doi:10.1016/j.biortech.2009.12.087 Google Scholar
  18. 18.
    Yamasaki T, Aki T, Shinozaki M, Taguchi M, Kawamoto S, Ono K (2006) Utilization of Shochu distillery wastewater for production of polyunsaturated fatty acids and xanthophylls using thraustochytrid. J Biosci Bioeng. doi:10.1263/jbb.102.323 Google Scholar
  19. 19.
    Shabala L, McMeekin T, Shabala S (2013) Thraustochytrids can be grown in low-salt media without affecting PUFA production. Mar Biotechnol. doi:10.1007/s10126-013-9499-y Google Scholar
  20. 20.
    Tribe LA, Briens CL, Margaritis A (1995) Determination of the volumetric mass transfer coefficient (k(L)a) using the dynamic “gas out-gas in” method: analysis of errors caused by dissolved oxygen probes. Biotechnol Bioeng. doi:10.1002/bit.260460412 Google Scholar
  21. 21.
    Huang TY, Lu WC, Chu IM (2012) A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. Bioresour Technol. doi:10.1016/j.biortech.2012.07.068 Google Scholar
  22. 22.
    Qu L, Ren L-J, Huang H (2013) Scale-up of docosahexaenoic acid production in fed-batch fermentation by Schizochytrium sp. based on volumetric oxygen-transfer coefficient. Biochem Eng J. doi:10.1016/j.bej.2013.05.011 Google Scholar
  23. 23.
    Chi Z, Liu Y, Frear C, Chen S (2009) Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biot. doi:10.1007/s00253-008-1740-7 Google Scholar
  24. 24.
    Song X, Zang X, Zhang X (2015) Production of high docosahexaenoic acid by Schizochytrium sp. using low-cost raw materials from food industry. J Oleo Sci. doi:10.5650/jos.ess14164 Google Scholar
  25. 25.
    Lowrey J, Armenta RE, Brooks MS (2016) Recycling of lipid-extracted hydrolysate as nitrogen supplementation for production of thraustochytrid biomass. J Ind Microbiol Biotechnol. doi:10.1007/s10295-016-1779-x Google Scholar
  26. 26.
    Soydemir G, Keris-Sen UD, Sen U, Gurol MD (2016) Biodiesel production potential of mixed microalgal culture grown in domestic wastewater. Bioproc Biosyst Eng. doi:10.1007/s00449-015-1487-3 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tomas Humhal
    • 1
  • Petr Kastanek
    • 1
    • 2
  • Zuzana Jezkova
    • 1
  • Anna Cadkova
    • 1
  • Jana Kohoutkova
    • 3
  • Tomas Branyik
    • 1
  1. 1.Department of BiotechnologyUniversity of Chemistry and Technology PraguePragueCzech Republic
  2. 2.EcoFuel Laboratories Ltd.PragueCzech Republic
  3. 3.Department of Food Analysis and NutritionUniversity of Chemistry and Technology PraguePragueCzech Republic

Personalised recommendations