Skip to main content
Log in

Highly efficient production of d-lactic acid from chicory-derived inulin by Lactobacillus bulgaricus

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of d-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for d-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of d-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest d-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of d-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of d-lactic acid production from inulin by SSF represents a high-yield method for d-lactic acid production from non-food grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846

    Article  CAS  Google Scholar 

  2. Gross RA, Bhanu K (2002) Biodegradable polymers for the environment. Science 297:803–807

    Article  CAS  Google Scholar 

  3. Lee JW, Kim HU, Choi S, Yi J, Lee SY (2011) Microbial production of building block chemicals and polymers. Curr Opin Biotechnol 22:758–767

    Article  CAS  Google Scholar 

  4. Fukushima K, Chang YH, Kimura Y (2007) Enhanced stereocomplex formation of poly (l-lactic acid) and poly (d-lactic acid) in the presence of stereoblock poly (lactic acid). Macromol Biosci 7:829–835

    Article  CAS  Google Scholar 

  5. Wang L, Zhao B, Li F, Xu K, Ma C, Tao F, Li Q, Xu P (2011) Highly efficient production of d-lactic acid by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal. Appl Microbiol Biotechnol 89:1009–1017

    Article  CAS  Google Scholar 

  6. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2013) Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 31:877–902

    Article  CAS  Google Scholar 

  7. Zhang Y, Vadlani PV (2013) d-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation. Bioprocess Biosyst Eng 36:1897–1904

    Article  CAS  Google Scholar 

  8. Mohamed Ali AR, Yukihiro T, Kenji S (2010) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:286–301

    Google Scholar 

  9. Saha BC, Nichols NN, Qureshi N, Cotta MA (2011) Comparison of separate hydrolysis and fermentation and simultaneous saccharification and fermentation processes for ethanol production from wheat straw by recombinant Escherichia coli strain FBR5. Appl Microbiol Biotechnol 92:865–874

    Article  CAS  Google Scholar 

  10. Tanaka T, Hoshina M, Tanabe S, Sakai K, Ohtsubo S, Taniguchi M (2006) Production of d-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour Technol 97:211–217

    Article  CAS  Google Scholar 

  11. Kango N (2008) Production of inulinase using tap roots of dandelion (Taraxacum officinale) by Aspergillus niger. J Food Eng 85:473–478

    Article  CAS  Google Scholar 

  12. Wang L, Xue Z, Bo Z, Bo Y, Ping X, Ma Y (2013) Jerusalem artichoke powder: a useful material in producing high-optical-purity l-lactic acid using an efficient sugar-utilizing thermophilic Bacilluscoagulans strain. Bioresour Technol 130:174–180

    Article  CAS  Google Scholar 

  13. Matías J, González J, Royano L, Barrena RA (2011) Analysis of sugars by liquid chromatography-mass spectrometry in Jerusalem artichoke tubers for bioethanol production optimization. Biomass Bioenerg 35:2006–2012

    Article  Google Scholar 

  14. Ricca E, Calabrò V, Curcio S, Iorio G (2009) Fructose production by chicory inulin enzymatic hydrolysis: a kinetic study and reaction mechanism. Process Biochem 44:466–470

    Article  CAS  Google Scholar 

  15. Hong S-J, Kim HJ, Kim J-W, Lee D-H, Seo J-H (2015) Optimizing promoters and secretory signal sequences for producing ethanol from inulin by recombinant Saccharomyces cerevisiae carrying Kluyveromyces marxianus inulinase. Bioprocess Biosyst Eng 38:263–272

    Article  CAS  Google Scholar 

  16. Singh RS, Dhaliwal R, Puri M (2007) Partial purification and characterization of exoinulinase from Kluyveromyces marxianus YS-1 for preparation of high-fructose syrup. J Microbiol Biotechnol 17:733–738

    CAS  Google Scholar 

  17. Kim H-C, Kim H-J, CHOI W-B, Nam S-W (2006) Inulooligosaccharide production from inulin by Saccharomyces cerevisiae strain displaying cell-surface endoinulinase. J Microbiol Biotechnol 16:360–367

    CAS  Google Scholar 

  18. Petrova P, Velikova P, Popova L, Petrov K (2015) Direct conversion of chicory flour into l-(+)-lactic acid by the highly effective inulinase producer Lactobacillus paracasei DSM 23505. Bioresour Technol 186:329–333

    Article  CAS  Google Scholar 

  19. Dao TH, Zhang J, Bao J (2013) Characterization of inulin hydrolyzing enzyme(s) in commercial glucoamylases and its application in lactic acid production from Jerusalem artichoke tubers (Jat). Bioresour Technol 148C:157–162

    Article  Google Scholar 

  20. Kalil SJ, Suzan R, Maugeri F, Rodrigues MI (2001) Optimization of inulinase production by Kluyveromyces marxianus using factorial design. Appl Biochem Biotechnol 94:257–264

    Article  CAS  Google Scholar 

  21. Xu Y, Zheng Z, Xu Q, Yong Q, Ouyang J (2016) Efficient conversion of inulin to inulooligosaccharides through endoinulinase from Aspergillus niger. J Agr Food Chem 64:2612–2618

    Article  CAS  Google Scholar 

  22. Prabhjot Kaur G, Rajesh Kumari M, Prabhjeet S (2006) Purification and properties of a heat-stable exoinulinase isoform from Aspergillus fumigatus. Bioresour Technol 97:894–902

    Article  Google Scholar 

  23. Baston O, Neagu C, Bahrim G (2013) Establishing the optimum conditions for inulin hydrolysis by using commercial inulinase. Rev Chim 64:649–653

    CAS  Google Scholar 

  24. Benthin S, Villadsen J (1995) Production of optically pure d-lactic acid by Lactobacillus bulgaricus and purification by crystallisation and liquid/liquid extraction. Appl Microbiol Biotechnol 42:826–829

    Article  CAS  Google Scholar 

  25. Grobben G, Van Casteren W, Schols H, Oosterveld A, Sala G, Smith M, Sikkema J, De Bont J (1997) Analysis of the exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 grown in continuous culture on glucose and fructose. Appl Microbiol Biotechnol 48:516–521

    Article  CAS  Google Scholar 

  26. Rault A, Bouix M, Béal C (2009) Fermentation pH influences the physiological-state dynamics of Lactobacillus bulgaricus CFL1 during pH-controlled culture. Appl Environ Microbiol 75:4374–4381

    Article  CAS  Google Scholar 

  27. Tsuge Y, Kawaguchi H, Sasaki K, Tanaka T, Kondo A (2014) Two-step production of d-lactic acid from mixed sugars by growing and resting cells of metabolically engineered Lactobacillus plantarum. Appl Microbiol Biotechnol 98:4911–4918

    Article  CAS  Google Scholar 

  28. Singhvi M, Joshi D, Adsul M, Varma A, Gokhale D (2010) d-(−)-l actic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chem 12:1106–1109

    Article  CAS  Google Scholar 

  29. Zhao B, Wang L, Li F, Hua D, Ma C, Ma Y, Xu P (2010) Kinetics of d-lactic acid production by Sporolactobacillus sp. strain CASD using repeated batch fermentation. Bioresour Technol 101:6499–6505

    Article  CAS  Google Scholar 

  30. Rhee S, Pack M (1980) Effect of environmental pH on fermentation balance of Lactobacillus bulgaricus. J Bacteriol 144:217–221

    CAS  Google Scholar 

  31. John RP, Anisha G, Nampoothiri KM, Pandey A (2009) Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnol Adv 27:145–152

    Article  CAS  Google Scholar 

  32. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  CAS  Google Scholar 

  33. Yáñez R, Alonso JL, Parajó JC (2005) d-Lactic acid production from waste cardboard. J Chem Technol Biotechnol 80:76–84

    Article  Google Scholar 

  34. Okano K, Zhang Q, Shinkawa S, Yoshida S, Tanaka T, Fukuda H, Kondo A (2009) Efficient production of optically pure d-lactic acid from raw corn starch by using a genetically modified l-lactic acid dehydrogenase gene-deficient and α-amylase-secreting Lactobacillus plantarum strain. Appl Environ Microbiol 75:462–467

    Article  CAS  Google Scholar 

  35. Nakano S, Ugwu CU, Tokiwa Y (2012) Efficient production of d-(−)-lactic acid from broken rice by Lactobacillus delbrueckii using Ca(OH)2 as a neutralizing agent. Bioresour Technol 104:791–794

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, the National Natural Science Foundation of China (51561145015), the Key Research and Development Program of Jiangsu Province of China (BF2015007).The authors are also grateful to the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Ouyang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Zang, Y., Zhou, J. et al. Highly efficient production of d-lactic acid from chicory-derived inulin by Lactobacillus bulgaricus . Bioprocess Biosyst Eng 39, 1749–1757 (2016). https://doi.org/10.1007/s00449-016-1650-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1650-5

Keywords

Navigation