Skip to main content
Log in

Caulerpa racemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, a simple and green method has been demonstrated for the synthesis of highly stable silver nanoparticles (AgNPs) using aqueous extract of Caulerpa racemosa (C. racemosa) as a reducing and capping agent. The formation and stability of AgNPs were studied using visual observation and UV–Visible (UV–Vis) spectroscopy. The stable AgNPs were further characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and high resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopic (EDS) methods. The biosynthesized AgNPs showed a sharp surface plasmon resonance peak at 441 nm in the visible region and they have extended stability which has been confirmed by the UV–Vis spectroscopic results. XRD result revealed the crystalline nature of synthesized AgNPs and they are mainly oriented in (111) plane. FT-IR studies proved that the phytoconstituents of C. racemosa protect the AgNPs from aggregation and also which are responsible for the high stability. The size of synthesized AgNPs was approximately 25 nm with distorted spherical shape, identified from the HR-TEM images. The synthesized AgNPs showed excellent catalytic activity towards degradation of methylene blue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ (2009) Supported metal nanoparticles on porous materials, methods and applications. Chem Soc Rev 38:481–494

    Article  CAS  Google Scholar 

  2. Velmurugan P, Anbalagan K, Manosathyadevan M, Lee K-J, Cho M, Lee S-M, Park J-H, Oh S-G, Bang K-S, Oh B-T (2014) Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess Biosyst Eng 37:1935–1943

    Article  CAS  Google Scholar 

  3. Hu L, Hecht DS, Gruner G (2010) Carbon Nanotube thin films: fabrication, properties, and applications. Chem Rev 110:5790–5844

    Article  CAS  Google Scholar 

  4. Ng LY, Mohammad AW, Leo CP, Hilal N (2013) Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308:15–33

    Article  CAS  Google Scholar 

  5. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592

    Article  CAS  Google Scholar 

  6. Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev 44:5778–5792

    Article  CAS  Google Scholar 

  7. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  8. Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983

    Article  CAS  Google Scholar 

  9. Sathishkumar M, Pavagadhi S, Mahadevan A, Balasubramanian R (2015) Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells. Ecotoxicol Environ Saf 114:232–240

    Article  CAS  Google Scholar 

  10. Edison TNJI, Atchudan R, Shim J-J, Kalimuthu S, Ahn B-C, Lee YR (2016) Turn-off fluorescence sensor for the detection of ferric ion in water using green synthesized N-doped carbon dots and its bio-imaging. J Photochem Photobiol B 158:235–242

    Article  CAS  Google Scholar 

  11. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  12. Philip D (2010) Honey mediated green synthesis of silver nanoparticles. Spectrochim Acta A 75:1078–1081

    Article  Google Scholar 

  13. Rajan R, Chandran K, Harper SL, Yun S-I, Kalaichelvan PT (2015) Plant extract synthesized silver nanoparticles: An ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373

    Article  CAS  Google Scholar 

  14. Roopan SM, Rohit Madhumitha G, Rahuman AA, Kamaraj C, Bharathi A, Surendra TV (2013) Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crop Prod 43:631–635

    Article  CAS  Google Scholar 

  15. Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S (2012) Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim Acta A 90:173–176

    Article  CAS  Google Scholar 

  16. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28:580–588

    Article  CAS  Google Scholar 

  17. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12

    Article  CAS  Google Scholar 

  18. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart. doi:10.1155/2014/963961

    Google Scholar 

  19. Sharma B, Purkayastha DD, Hazra S, Thajamanbi M, Bhattacharjee CR, Ghosh NN, Rout J (2014) Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C.Ag. and antioxidant activity of biomatrix loaded nanoparticles. Bioprocess Biosyst Eng 37:2559–2565

    Article  CAS  Google Scholar 

  20. Karthik L, Kumar G, Kirthi AV, Rahuman AA, Bhaskara Rao KV (2014) Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng 37:261–267

    Article  CAS  Google Scholar 

  21. Wei X, Luo M, Li W, Yang L, Liang X, Xu L, Kong P, Liu H (2012) Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Biores Technol 103:273–278

    Article  CAS  Google Scholar 

  22. Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:243–247

    Article  Google Scholar 

  23. Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Biores Technol 101:8772–8776

    Article  CAS  Google Scholar 

  24. Sathishkumar M, Sneha K, Yun YS (2010) Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Biores Technol 101:7958–7965

    Article  CAS  Google Scholar 

  25. Chandran SP, Chaudhary M, Pasricha R, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583

    Article  CAS  Google Scholar 

  26. Pandian AM, Karthikeyan C, Rajasimman M, Dinesh MG (2015) Synthesis of silver nanoparticle and its application. Ecotoxicol Environ Saf 121:211–217

    Article  CAS  Google Scholar 

  27. Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631

    Article  CAS  Google Scholar 

  28. Nazeruddin GM, Prasad NR, Prasad SR, Shaikh YI, Waghmare SR, Adhyapak P (2014) Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity. Ind Crop Prod 60:212–216

    Article  CAS  Google Scholar 

  29. Edison TNJI, Sethuraman MG (2013) Electrocatalytic reduction of benzyl chloride by green synthesized silver nanoparticles using pod extract of Acacia nilotica. ACS Sustainable Chem Eng 1:1326–1332

    Article  Google Scholar 

  30. Tripathi A, Chandrasekaran N, Raichur AM, Mukherjee A (2009) Antibacterial applications of silver nanoparticles synthesized by aqueous extract of Azadirachta indica (Neem) leaves. J Biomed Nanotechnol 5:93–98

    Article  CAS  Google Scholar 

  31. Pereira L (2015) Seaweed flora of the European North Atlantic and Mediterranean, Springer Handbook of Marine Biotechnology, p 70

  32. Nielsen PG, Carle JS, Christophersen C (1982) Final structure of caulerpicin, a toxin mixture from the green alga Caulerpa racemosa. Phytochemistry 21:1643–1645

    Article  CAS  Google Scholar 

  33. Anjaneyulu SR, Prakash CVS, Mallavadhani UV (1991) Two caulerpin analogues and a sesquiterpene from Caulerpa racemosa. Phytochemistry 30:3041–3042

    Article  CAS  Google Scholar 

  34. Ghosh P, Adhikari U, Ghosal PK, Pujol CA, Carlucci MJ, Damonte EB, Ray B (2004) In vitro anti-herpetic activity of sulfated polysaccharide fractions from Caulerpa racemosa. Phytochemistry 65:3151–3157

    Article  CAS  Google Scholar 

  35. Rocha FD, Soares AR, Houghton PJ, Pereira RC, Kaplan MAC, Teixeira VL (2007) Potential cytotoxic activity of some Brazilian seaweeds on human melanoma cells. Phytother Res 21:170–175

    Article  Google Scholar 

  36. Bekc Z, Sekia Y, Cavas L (2009) Removal of malachite green by using an invasive marine alga Caulerpa racemosa var. cylindracea. J Hazard Mater 161:1454–1460

    Article  Google Scholar 

  37. Cengiz S, Cavas L (2008) Removal of methylene blue by invasive marine seaweed: Caulerpa racemosa var. cylindracea. Biores Technol 99:2357–2363

    Article  CAS  Google Scholar 

  38. Kamal C, Sethuraman MG (2012) Caulerpin-A bis-Indole alkaloid as a green inhibitor for the corrosion of mild steel in 1 M HCl solution from the marine alga Caulerpa racemosa. Ind Eng Chem Res 51:10399–10407

    Article  CAS  Google Scholar 

  39. Edison TJI, Sethuraman MG (2012) Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem 47:1351–1357

    Article  CAS  Google Scholar 

  40. Gillman PK (2011) CNS toxicity involving methylene blue: the exemplar for understanding and predicting drug interactions that precipitate serotonin toxicity. J Psychopharmacol 25:429–436

    Article  CAS  Google Scholar 

  41. Edison TJI, Atchudan R, Lee YR (2016) Optical sensor for dissolved ammonia through the green synthesis of silver nanoparticles by fruit extract of Terminalia chebula. J Clust Sci 27:683–690

    Article  CAS  Google Scholar 

  42. Kora AJ, Arunachalam J (2012) Green fabrication of silver nanoparticles by gum tragacanth (Astragalus gummifer): A dual functional reductant and stabilizer. J Nanomater. doi:10.1155/2012/869765

    Google Scholar 

  43. Sun L, Wang L, Song Y, Guo C, Sun Y, Peng C, Liu Z, Li Z (2008) Aggregation-based growth of silver nanowires at room temperature. Appl Surf Sci 254:2581–2587

    Article  CAS  Google Scholar 

  44. Darroudi M, Ahamad MB, Zamiri R, Zak A, Abdullah AH, Ibrahim NA (2011) Time-dependent effect in green synthesis of silver nanoparticles. Int J Nanomedicine 6:677–681

    Article  CAS  Google Scholar 

  45. Le AT, Huy PT, Tam PD, Huy TQ, Cam PD, Kudrinskiy AA, Krutyakov YA (2010) Green synthesis of finely-dispersed highly bactericidal silver nanoparticles via modified Tollens technique. Curr Appl Phys 10:910–916

    Article  Google Scholar 

  46. Jana D, De G (2011) Spontaneous generation and shape conversion of silver nanoparticles in alumina sol, and shaped silver nanoparticle incorporated alumina films. J Mater Chem 21:6072–6078

    Article  CAS  Google Scholar 

  47. Zhu Y, Wang X, Guo W, Wang J, Zhu CW, Wang X, Guo W, Wang J, Wang C (2010) Sonochemical synthesis of silver nanorods by reduction of sliver nitrate in aqueous solution. Ultrason Sonochem 17:675–679

    Article  CAS  Google Scholar 

  48. Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983

    Article  CAS  Google Scholar 

  49. Kora AJ, Beedu SR, Jayaraman A (2012) Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org Med Chem Lett. doi:10.1186/2191-2858-2-17

    Google Scholar 

  50. Bansal P, Chaudhary GR, Mehta SK (2015) Comparative study of catalytic activity of ZrO2 nanoparticles for sonocatalytic and photocatalytic degradation of cationic and anionic dyes. Chem Eng J 280:475–485

    Article  CAS  Google Scholar 

  51. Josephine GAS, Nisha UM, Meenakshi G, Sivasamy A (2015) Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor. Ecotoxicol Environ Saf 121:67–72

    Article  Google Scholar 

  52. Ashokkumar S, Ravi S, Kathiravan V, Velmurugan S (2014) Rapid biological synthesis of silver nanoparticles using Leucas martinicensis leaf extract for catalytic and antibacterial activity. Environ Sci Pollut Res 21:11439–11446

    Article  CAS  Google Scholar 

  53. Edison TJI, Baral ER, Lee YR, Kim SH (2016) Biogenic synthesis of silver nanoparticles using Cnidium officinale extract and their catalytic reduction of 4-Nitroaniline. J Clust Sci 27:285–298

    Article  CAS  Google Scholar 

  54. Edison TJI, Sethuraman MG (2013) Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol. Spectrochim Acta A 104:262–264

    Article  CAS  Google Scholar 

  55. Edison TNJI, Lee YR, Sethuraman MG (2016) Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye. Spectrochim Acta A 161:122–129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chennappan Kamal or Yong Rok Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edison, T.N.J.I., Atchudan, R., Kamal, C. et al. Caulerpa racemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue. Bioprocess Biosyst Eng 39, 1401–1408 (2016). https://doi.org/10.1007/s00449-016-1616-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1616-7

Keywords

Navigation