Advertisement

Bioprocess and Biosystems Engineering

, Volume 39, Issue 7, pp 1073–1079 | Cite as

Optimization of aeration for biodiesel production by Scenedesmus obliquus grown in municipal wastewater

  • Song-Fang Han
  • Wenbiao Jin
  • Renjie Tu
  • Abd El-Fatah Abomohra
  • Zhi-Han Wang
Original Paper

Abstract

Despite the significant breakthroughs in research on microalgae as a feedstock for biodiesel, its production cost is still much higher than that of fossil diesel. One possible solution to overcome this problem is to optimize algal growth and lipid production in wastewater. The present study examines the optimization of pretreatment of municipal wastewater and aeration conditions in order to enhance the lipid productivity of Scenedesmus obliquus. Results showed that no significant differences were recorded in lipid productivity of S. obliquus grown in primary settled or sterilized municipal wastewater; however, ultrasound pretreatment of wastewater significantly decreased the lipid production. Whereas, aeration rates of 0.2 vvm significantly increased lipid content by 51 %, with respect to the non-aerated culture, which resulted in maximum lipid productivity (32.5 mg L−1 day−1). Furthermore, aeration enrichment by 2 % CO2 resulted in increase of lipid productivity by 46 % over the CO2 non-enriched aerated culture. Fatty acid profile showed that optimized aeration significantly enhanced monounsaturated fatty acid production, composed mainly of C18:1, by 1.8 times over the non-aerated S. obliquus culture with insignificant changes in polyunsaturated fatty acid proportion; suggesting better biodiesel characteristics for the optimized culture.

Keywords

Biodiesel Microalgae Optimization Scenedesmus obliquus Wastewater 

Notes

Acknowledgments

We are grateful to the anonymous reviewers for suggesting insightful comments which led to a much improved manuscript. Financial support from Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Project number HCK201508) is highly appreciated.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88(10):3548–3555CrossRefGoogle Scholar
  2. 2.
    Abomohra A, El-Sheekh M, Hanelt D (2014) Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel. Biomass Bioenergy 64:237–244CrossRefGoogle Scholar
  3. 3.
    Jiang L, Luo S, Fan X, Yang Z, Guo R (2011) Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl Energy 88(10):3336–3341CrossRefGoogle Scholar
  4. 4.
    Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102(1):159–165CrossRefGoogle Scholar
  5. 5.
    Ketheesan B, Nirmalakhandan N (2011) Development of a new airlift-driven raceway reactor for algal cultivation. Appl Energy 88(10):3370–3376CrossRefGoogle Scholar
  6. 6.
    Chen G, Zhao L, Qi Y (2015) Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl Energy 137:282–291CrossRefGoogle Scholar
  7. 7.
    de la Noüe J, Laliberté G, Proulx D (1992) Algae and waste water. J Appl Phycol 4(3):247–254CrossRefGoogle Scholar
  8. 8.
    Martijn EJ, Redwood M (2005) Wastewater irrigation in developing countries—limitations for farmers to adopt appropriate practices. Irrig Drain 54(S1):S63–S70CrossRefGoogle Scholar
  9. 9.
    Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929CrossRefGoogle Scholar
  10. 10.
    Flotats X, Bonmatí A, Fernández B, Magrí A (2009) Manure treatment technologies: on-farm versus centralized strategies. NE Spain as case study. Bioresour Technol 100(22):5519–5526CrossRefGoogle Scholar
  11. 11.
    Dawah A, Soliman A, Abomohra A, Battah M, Anees D (2015) Influence of alum on cyanobacterial blooms and water quality of earthen fish ponds. Environ Sci Pollut Res. doi: 10.1007/s11356-015-4826-7 Google Scholar
  12. 12.
    Zhou W, Min M, Li Y, Hu B, Ma X, Cheng Y, Liu Y, Chen P, Ruan R (2012) A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresour Technol 110:448–455CrossRefGoogle Scholar
  13. 13.
    Tu R, Jin W, Xi T, Yang Q, Han S, Abomohra A (2015) Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater. Water Res. doi: 10.1016/j.watres.2015.07.039 Google Scholar
  14. 14.
    Abomohra A, Wagner M, El-Sheekh M, Hanelt D (2013) Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: screening studies towards biodiesel production. J Appl Phycol 25(4):931–936CrossRefGoogle Scholar
  15. 15.
    Kessler E, Czygan FC (1970) Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella. Arch Mikrobiol 70:211–216CrossRefGoogle Scholar
  16. 16.
    Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509Google Scholar
  17. 17.
    Kaczmarzyk D, Fulda M (2010) Fatty acid activation in Cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol 152(3):1598–1610CrossRefGoogle Scholar
  18. 18.
    Elliott LG, Feehan C, Laurens LML, Pienkos PT, Darzins A, Posewitz MC (2012) Establishment of a bioenergy-focused microalgal culture collection. Algal Res 1:102–113CrossRefGoogle Scholar
  19. 19.
    El-Sheekh M, Abomohra A, Hanelt D (2013) Optimization of biomass and fatty acid productivity of Scenedesmus obliquus as a promising microalga for biodiesel production. World J Microbiol Biotechnol 29:915–922CrossRefGoogle Scholar
  20. 20.
    Orpez R, Martinez ME, Hodaifa G, Yousfi FE, Jbari N, Sanchez S (2009) Growth of the microalga Botryococcus braunii in secondarily treated sewage. Desalination 246:625–630CrossRefGoogle Scholar
  21. 21.
    Aravantinou A, Theodorakopoulos M, Manariotis I (2013) Selection of microalgae for wastewater treatment and potential lipids production. Bioresour Technol 147:130–134CrossRefGoogle Scholar
  22. 22.
    Gupta S, Ansari F, Shriwastav A, Sahoo N, Rawat I, Bux F (2016) Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J Cleaner Prod 115:255–264CrossRefGoogle Scholar
  23. 23.
    Ji M, Yun H, Park Y, Kabra A, Oh I, Choi J (2015) Mixotrophic cultivation of a microalga Scenedesmus obliquus in municipal wastewater supplemented with food wastewater and flue gas CO2 for biomass production. J Environ Manag 159:115–120CrossRefGoogle Scholar
  24. 24.
    Zhang C, Zhang Y, Zhuang B, Zhou X (2014) Strategic enhancement of algal biomass, nutrient uptake and lipid through statistical optimization of nutrient supplementation in coupling Scenedesmus obliquus-like microalgae cultivation and municipal wastewater treatment. Bioresour Technol 171:71–79CrossRefGoogle Scholar
  25. 25.
    Shen Q, Jiang J, Chen L, Cheng L, Xu X, Chen H (2015) Effect of carbon source on biomass growth and nutrients removal of Scenedesmus obliquus for wastewater advanced treatment and lipid production. Bioresour Technol 190:257–263CrossRefGoogle Scholar
  26. 26.
    Voltolina D, Corderoieves B, Nieves M, Soto LP (1999) Growth of Scenedesmus sp. in artificial wastewater. Bioresour Technol 68:265–268CrossRefGoogle Scholar
  27. 27.
    Pilli S, Bhunia P, Yan S, LeBlanc R, Tyagi R, Surampalli R (2011) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem 18:1–18CrossRefGoogle Scholar
  28. 28.
    Ryu B, Kim EJ, Kim H, Kim J, Choi Y, Yang J (2014) Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria. Biotechnol Bioprocess Eng 19(2):201–210CrossRefGoogle Scholar
  29. 29.
    Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102(8):5138–5144CrossRefGoogle Scholar
  30. 30.
    Diaz MJ, Madejón E, López F, López R, Cabrera F (2002) Optimization of the rate vinasse/grape marc for co-composting process. Process Biochem 37(10):1143–1150CrossRefGoogle Scholar
  31. 31.
    Barbosa MJ, Albrecht M, Wijffels RH (2003) Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnol Bioeng 83:112–120CrossRefGoogle Scholar
  32. 32.
    Sitanggang AB, Wu H, Wang SS, Ho Y (2010) Effect of pellet size and stimulating factor on the glucosamine production using Aspergillus sp. BCRC 31742. Bioresour Technol 101(10):3595–3601CrossRefGoogle Scholar
  33. 33.
    Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3(3):203–209CrossRefGoogle Scholar
  34. 34.
    Saad N, Abdeshahian P, Kalil MS, Yusoff WW, Abdul Hamid A (2014) Optimization of aeration and agitation rate for lipid and gamma linolenic acid production by Cunninghamella bainieri 2A1 in submerged fermentation using response surface methodology. Sci World J 2014:280146CrossRefGoogle Scholar
  35. 35.
    Fan KW, Jiang Y, Faan YW, Chen F (2007) Lipid characterization of Mangrove thraustochytrid Schizochytrium mangrovei. J Agric Food Chem 55:2906–2910CrossRefGoogle Scholar
  36. 36.
    Robinson SP, Portis AR (1989) Ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein prevents the in vitro decline in activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 90(3):968–971CrossRefGoogle Scholar
  37. 37.
    Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101(1):71–74CrossRefGoogle Scholar
  38. 38.
    Damiani MC, Popovich CA, Constenla D, Leonardi PI (2010) Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresour Technol 101(11):3801–3807CrossRefGoogle Scholar
  39. 39.
    EN 14214:2008+A1 (2009) Automotive fuels. Fatty acid methyl esters (FAME) for diesel engines. Requirements and test methods. British Standards, ISBN 978 0 580 70781 0Google Scholar
  40. 40.
    Song M, Pei H, Hu W, Ma G (2013) Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresour Technol 141:245–251CrossRefGoogle Scholar
  41. 41.
    Ma Y, Wang Z, Yu C, Yin Y, Zhou G (2014) Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresour Technol 167:503–509CrossRefGoogle Scholar
  42. 42.
    Stournas S, Lois E, Serdari A (1995) Effects of fatty acid derivatives on the ignition quality and cold flow of diesel fuel. J Am Oil Chem Soc 72:433–437CrossRefGoogle Scholar
  43. 43.
    Knothe G (2006) Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc 83:823–833CrossRefGoogle Scholar
  44. 44.
    Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358–1364CrossRefGoogle Scholar
  45. 45.
    Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16:143–169CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Song-Fang Han
    • 1
  • Wenbiao Jin
    • 1
  • Renjie Tu
    • 1
  • Abd El-Fatah Abomohra
    • 1
    • 2
  • Zhi-Han Wang
    • 1
  1. 1.Harbin Institute of Technology Shenzhen Graduate SchoolShenzhenChina
  2. 2.Botany Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations