Skip to main content
Log in

Enhancement in xylose utilization using Kluyveromyces marxianus NIRE-K1 through evolutionary adaptation approach

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The evolutionary adaptation was carried out on the thermotolerant yeast Kluyveromyces marxianus NIRE-K1 at 45 °C up to 60 batches to enhance its xylose utilization capability. The adapted strain showed higher specific growth rate and 3-fold xylose uptake rate and short lag phase as compared to the native strain. During aerobic growth adapted yeast showed 2.81-fold higher xylose utilization than that of native. In anaerobic batch fermentation, adapted yeast utilized about 91 % of xylose in 72 h and produced 2.88 and 18.75 g l−1 of ethanol and xylitol, respectively, which were 5.11 and 5.71-fold higher than that of native. Ethanol yield, xylitol yield and specific sugar consumption rate obtained by the adapted cells were found to be 1.57, 1.65 and 4.84-fold higher than that of native yeast, respectively. Aforesaid results suggested that the evolutionary adaptation will be a very effective strategy in the near future for economic lignocellulosic ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kumar S, Mishra IM, Adhikari DK (2008) Bioethanol production from baggasse with cell recycle at high temperature. J Biotechnol 136:S459

    Article  Google Scholar 

  2. Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energy Rev 36:91–106

    Article  CAS  Google Scholar 

  3. Long TM, Su YK, Headman J, Higbee A, Willis LB, Jeffries TW (2012) Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum. Appl Env Microbiol 78:5492–5500

    Article  CAS  Google Scholar 

  4. Kumar S, Singh SP, Mishra IM, Adhikari DK (2009) Recent advances in production of bioethanol from lignocellulosic biomass. Chem Eng Technol 32:517–526

    Article  CAS  Google Scholar 

  5. Kumar S, Singh SP, Mishra IM, Adhikari DK (2009) Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyce sp. IIPE453. J Ind Microbiol Biotechnol 36:1483–1489

    Article  CAS  Google Scholar 

  6. Kumar S, Singh SP, Mishra IM, Adhikari DK (2010) Feasibility of ethanol production with enhanced sugar concentration in bagasse hydrolysate at high temperature using Kluyveromyces sp. IIPE453. Biofuels 1:697–704

    Article  CAS  Google Scholar 

  7. Arora R, Behera S, Sharma NK, Singh R, Yadav YK, Kumar S (2014) Biochemical conversion of rice straw (Oryza sativa L.) to bioethanol using thermotolerant isolate K. marxianus NIRE-K3. In: Sharma NR, Thakur RC, Sharma M, Parihar L, Kumar G (eds) Proceeding of exploring and basic science for next generation frontiers. Elsevier, New Delhi, pp 143–146

    Google Scholar 

  8. Behera S, Arora R, Sharma NK, Kumar S (2014) Fermentation of glucose and xylose sugar for the production of ethanol and xylitol by the newly isolated NIRE-GX1 yeast. In: Kumar S, Sarma AK, Tyagi SK, Yadav YK (eds) Recent advances in bio-energy research, vol 3. SSS-NIRE, Kapurthala, pp 175–182

    Google Scholar 

  9. Kumar S, Dheeran P, Singh SP, Mishra IM, Adhikari DK (2015) Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast. Bioprocess Biosyst Eng 38:39–47

    Article  CAS  Google Scholar 

  10. Hahn-Hägerdal B, Karhuma K, Jeppsson M, Gorwa-Grauslund MF (2007) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:147–177

    Google Scholar 

  11. Runquist D, Hahn-Hägerdal B, Rådström P (2010) Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 3:5

    Article  Google Scholar 

  12. Sharma NK, Behera S, Arora R, Kumar S (2014) Genetic modification in yeast for simultaneous utilization of glucose and xylose. In: Kumar S, Sarma AK, Tyagi SK, Yadav YK (eds) Recent advances in bioenergy research, vol III. SSS-NIRE, Kapurthala, pp 194–207

    Google Scholar 

  13. Jeffries TW (1983) Utilization of xylose by bacteria, yeasts and fungi. Adv Biochem Eng Biotech 27:1–31

    CAS  Google Scholar 

  14. Wyman CE (1996) Handbook on bioethanol: production and utilization. Taylor Francis, Washington

    Google Scholar 

  15. Maleszka R, Schneider H (1982) Fermentation of d-xylose, xylitol and d-xylulose by yeasts. Can J Microbiol 28:360–363

    Article  CAS  Google Scholar 

  16. Kotter P, Ciriacy M (1993) Xylose fermentation by Sacchaaromyces cerevisiae. Appl Microbiol Biotechnol 38:776–783

    Article  Google Scholar 

  17. Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cello-oligosaccharides assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143

    Article  CAS  Google Scholar 

  18. Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang YHP (2011) Bioethanol production from pentose sugars: current status and future prospects. Ren Sus Energy Rev 15:4950–4962

    Article  CAS  Google Scholar 

  19. Sedlak M, Ho NW (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21:671–684

    Article  CAS  Google Scholar 

  20. Young E, Poucher A, Comer A, Bailey A, Alper H (2011) Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl Environ Microbiol 77:3311–3319

    Article  CAS  Google Scholar 

  21. Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E (2014) Engineering of yeast hexose transporters to transport d-xylose without inhibition by d-glucose. Proc Natl Acad Sci USA 111:5159–5164

    Article  CAS  Google Scholar 

  22. Yablochkova EN, Bolotnikova OI, Mikhaĭlova NP, Nemova NN, Ginak AI (2003) The activity of xylose reductase and xylitol dehydrogenase in yeasts. Microbiol 72:414–417

    Article  CAS  Google Scholar 

  23. Yablochkova EN, Bolotnikova OI, Mikhaĭlova NP, Nemova NN, Ginak AI (2004) Activity of the key enzymes in xylose assimilating yeasts at different rates of oxygen transfer to the fermentation medium. Microbiol 73:129–133

    Article  CAS  Google Scholar 

  24. Arora R, Behera S, Kumar S (2015) Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: a future perspective. Renew Sust Energy Rev 51:699–717

    Article  CAS  Google Scholar 

  25. Rodrussamee N, Lertwattanasakul N, Hirata K, Suprayogi Limtong S, Kosaka T, Yamada M (2011) Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl Microbiol Biotechnol 90(1573):1586

    Google Scholar 

  26. Zhang B, Li L, Zhang J, Gao X, Wang D, Hong J (2013) Improving ethanol and xylitol fermentation at elevated temperature through substitution of xylose reductase in Kluyveromyces marxianus. J Ind Microbiol Biotechnol 40:305–316

    Article  CAS  Google Scholar 

  27. Signori L, Passolunghi S, Ruohonen L, Porro D, Branduardi P (2014) Effect of oxygenation and temperature on glucosexylose fermentation in Kluyveromyces marxianus CBS712 strain. Microb Cell Fact 13:51

    Article  Google Scholar 

  28. Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT (2005) Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res 5:925–934

    Article  CAS  Google Scholar 

  29. Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14:611–622

    Article  CAS  Google Scholar 

  30. Kuyper M, Winkler AA, van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655–664

    Article  CAS  Google Scholar 

  31. Liu E, Hu Y (2010) Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng J 48:204–210

    Article  CAS  Google Scholar 

  32. Cadiere A, Ortiz-Julien A, Camarasa C, Dequin S (2011) Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway. Metab Eng 13:263–271

    Article  CAS  Google Scholar 

  33. Koppram R, Albers E, Olsson L (2012) Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels 5:32

    Article  CAS  Google Scholar 

  34. Shen Y, Chen X, Peng B, Chen L, Hou J, Bao X (2012) An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol 96:1079–1091

    Article  CAS  Google Scholar 

  35. Lee SM, Jellison T, Alper HS (2014) Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol Biofuels 7:122

    Google Scholar 

  36. Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2, 5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352

    Article  CAS  Google Scholar 

  37. Agbogbo FK, Haagensen FD, Milam D, Wenger KS (2008) Fermentation of acid pretreated corn stover to ethanol without detoxification using Pichia stipitis. Appl Biochem Biotechnol 145:53–58

    Article  CAS  Google Scholar 

  38. Zhu JJ, Yong Q, Xu Y, Chen S-X, Yu SY (2009) Adaptation fermentation of Pichia stipitis and combination detoxification on steam exploded lignocellulosic prehydrolyzate. Nat Sci 1:47–54

    CAS  Google Scholar 

  39. Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJ (2009) A novel evolutionary engineering approach for accelerated utilization of glucose, xylose and arabinose mixtures by engineered Saccharomyces cerevisiae. Appl Environ Microbiol 75:907–914

    Article  CAS  Google Scholar 

  40. Diao L, Liu Y, Qian F, Yang J, Jiang Y, Yang S (2013) Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnol 13:110

    Article  Google Scholar 

  41. Arora R, Behera S, Sharma NK, Kumar S (2015) A new search for thermotolerant yeast, its characterization and optimization using response surface methodology for ethanol production. Front Microbiol 6:1–16

    Google Scholar 

  42. Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals. McGraw-Hill, New York

  43. Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990–1998

    Article  CAS  Google Scholar 

  44. Beales N (2004) Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH and osmotic stress: a review. Compr Rev Food Sci Food Saf 3:1–20

    Article  CAS  Google Scholar 

  45. Brejning J, Arneborg N, Jaspersen L (2005) Identification of genes and proteins induced during lag and early exponential phase of lager brewing yeasts. J Appl Microbiol 98:261–271

    Article  CAS  Google Scholar 

  46. Vriesekoop F, Pamment NB (2005) Acetaldehyde addition and pre-adaptation to the stressor together virtually eliminated the ethanol-induced lag phase in Saccharomyces cerevisiae. Lett Appl Microbiol 41:424–427

    Article  CAS  Google Scholar 

  47. Mihoub F, Mistou MY, Guillot A, Leveau JY, Boubetra A, Billaux F (2003) Cold adaptation of Escherichia coli: microbiological and proteomic approaches. Int J Food Microbiol 89:171–184

    Article  CAS  Google Scholar 

  48. Landaeta R, Aroca G, Acevedo F, Teixeira JA, Mussatto SI (2013) Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation. Appl Energy 102:124–130

    Article  CAS  Google Scholar 

  49. Slininger PJ, Shea-Andersh MA, Thompson SR, Dien BS, Kurtzman CP, Balan V, da Costa Sousa L, Uppugundla N, Dale BE, Cotta MA (2015) Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading. Biotechnol Biofuels 8:60

    Article  Google Scholar 

  50. Nigam JN (2001) Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. J Appl Microbiol 90:208–215

    Article  CAS  Google Scholar 

  51. Martin C, Marcet M, Almazan O, Jonsson LJ (2007) Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Biores Techn 98:1767–1773

    Article  CAS  Google Scholar 

  52. Pereira SR, Sanchez I, Nogue V, Frazao CJ, Serafim LS, Gorwa-Grauslund MF, Xavier AM (2015) Adaptation of Scheffersomyces stipitis to hardwood spent sulfite liquor by evolutionary engineering. Biotechnol Biofuels 8:50

    Article  Google Scholar 

  53. Silva CJ, Roberto IC (2001) Improvement of xylitol production by Candida guilliermondii FTI 20037 previously adapted to rice straw hemicellulosic hydrolysate. Lett Appl Microbiol 32:248–252

    Article  CAS  Google Scholar 

  54. Matsushika A, Oguri E, Sawayama S (2010) Evolutionary adaptation of recombinant shochu yeast for improved xylose utilization. J Biosci Bioeng 110:102–105

    Article  CAS  Google Scholar 

  55. Wahlbom CF, van Zyl WH, Jönsson LJ, Hahn-Hägerdal B, Otero RR (2003) Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 3:319–326

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (N. K. Sharma) is very thankful to Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala for providing Junior Research Fellowship and I. K. Gujral Punjab Technical University, Kapurthala for providing Ph.D. registration (Pro. reg. 1422002). Authors are also gratefully acknowledged the Ministry of New and Renewable Energy, Govt. of India for providing financial supports to carry out the research activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Additional information

N. K. Sharma and S. Behera equal contributors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N.K., Behera, S., Arora, R. et al. Enhancement in xylose utilization using Kluyveromyces marxianus NIRE-K1 through evolutionary adaptation approach. Bioprocess Biosyst Eng 39, 835–843 (2016). https://doi.org/10.1007/s00449-016-1563-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1563-3

Keywords

Navigation