Bioprocess and Biosystems Engineering

, Volume 39, Issue 2, pp 277–284 | Cite as

Autotrophic denitrification by nitrate-dependent Fe(II) oxidation in a continuous up-flow biofilter

  • Jun Zhou
  • Hongyu WangEmail author
  • Kai YangEmail author
  • Bin Ji
  • Dan Chen
  • Huining Zhang
  • Yuchong Sun
  • Jun Tian
Original Paper


A continuous-upflow biofilter packed with sponge iron was constructed for nitrate removal under an anaerobic atmosphere. Microbacterium sp. W5, a nitrate reducing and Fe(II) oxidizing strain, was added to the biofilter as an inoculum. The best results were achieved when NO3 -N concentration was 30 mg/L and Fe2+ was 800 mg/L. Nitrite in influent would inhibit nitrate removal and aqueous Fe2+ resulted in encrustation. Fe(II)EDTA would prevent cells from encrustation and the maximum nitrogen removal efficiency was about 90 % with Fe(II)EDTA level of 1100 mg/L. Nitrate reduction followed first-order reaction kinetics. Characteristics of biofilms were analyzed by X-ray fluorescence spectroscopy.


Continuous-upflow biofilter Encrustation Nitrate-dependent Fe(II) oxidation Nitrate removal 



This work was financially supported by the National Natural Science Foundation of China (NSFC) (No. 51008239 and 51378400), the Natural Science Foundation of Hubei Province, China (No. 2013CFB289 and 2013CFB308) and, the National "Twelfth Five-Year" Plan for Science and Technology Pillar Program (2014BAL04B04, 2015BAL01B02).


  1. 1.
    Ghafari S, Hasan M, Aroua MK (2008) Bio-electrochemical removal of nitrate from water and wastewater—a review. Bioresour Technol 99:3965–3974CrossRefGoogle Scholar
  2. 2.
    Karanasios KA, Vasiliadou IA, Pavlou S, Vayenas DV (2010) Hydrogenotrophic denitrification of potable water: a review. J Hazard Mater 180:20–37CrossRefGoogle Scholar
  3. 3.
    Shrimali M, Singh KP (2001) New methods of nitrate removal from water. Environ Pollut 112:351–359CrossRefGoogle Scholar
  4. 4.
    Foglar L, Briski F, Sipos L, Vukovic M (2005) High nitrate removal from synthetic wastewater with the mixed bacterial culture. Bioresour Technol 96:879–888CrossRefGoogle Scholar
  5. 5.
    Chung J, Amin K, Kim S, Yoon S, Kwon K, Bae W (2014) Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor. Water Res 58:169–178CrossRefGoogle Scholar
  6. 6.
    Chakraborty A, Picardal F (2013) Neutrophilic, nitrate-dependent, Fe(II) oxidation by a Dechloromonas species. World J Microbiol Biotechnol 29:617–623CrossRefGoogle Scholar
  7. 7.
    Zhang M, Zheng P, Wang R, Li W, Lu H, Zhang J (2014) Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: a perspective autotrophic nitrogen pollution control technology. Chemosphere 117:604–609CrossRefGoogle Scholar
  8. 8.
    Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764CrossRefGoogle Scholar
  9. 9.
    Canfield DE, Rosing MT, Bjerrum C (2006) Early anaerobic metabolisms. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 361:1819–1834CrossRefGoogle Scholar
  10. 10.
    Straub KL, Schonhuber WA, Buchholz-Cleven B, Schink B (2004) Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol J 21:371–378CrossRefGoogle Scholar
  11. 11.
    Carlson HK, Clark IC, Blazewicz SJ, Iavarone AT, Coates JD (2013) Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions. J Bacteriol 195:3260–3268CrossRefGoogle Scholar
  12. 12.
    Kappler A, Johnson CM, Crosby HA, Beard BL, Newman DK (2010) Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria. Geochim Cosmochim Acta 74:2826–2842CrossRefGoogle Scholar
  13. 13.
    Chakraborty A, Roden EE, Schieber J, Picardal F (2011) Enhanced growth of Acidovorax sp. strain 2AN during nitrate-dependent Fe(II) oxidation in batch and continuous-flow systems. Appl Environ Microbiol 77:8548–8556CrossRefGoogle Scholar
  14. 14.
    Kappler A, Schink B, Newman DK (2005) Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1. Geobiology 3:235–245CrossRefGoogle Scholar
  15. 15.
    Finneran KT, Housewright ME, Lovley DR (2002) Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ Microbiol 4:510–516CrossRefGoogle Scholar
  16. 16.
    Li B, Tian C, Zhang D, Pan X (2014) Anaerobic nitrate-dependent iron (II) oxidation by a novel autotrophic bacterium, Citrobacter freundii strain PXL1. Geomicrobiol J 31:138–144CrossRefGoogle Scholar
  17. 17.
    Oshiki M, Ishii S, Yoshida K, Fujii N, Ishiguro M, Satoh H, Okabe S (2013) Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (Anammox) bacteria. Appl Environ Microbiol 79:4087–4093CrossRefGoogle Scholar
  18. 18.
    Weber KA, Hedrick DB, Peacock AD, Thrash JC, White DC, Achenbach LA, Coates JD (2009) Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002. Appl Microbiol Biotechnol 83:555–565CrossRefGoogle Scholar
  19. 19.
    Byrne-Bailey KG, Weber KA, Chair AH, Bose S, Knox T, Spanbauer TL, Chertkov O, Coates JD (2010) Completed genome sequence of the anaerobic iron-oxidizing bacterium Acidovorax ebreus strain TPSY. J Bacteriol 192:1475–1476CrossRefGoogle Scholar
  20. 20.
    Kopf SH, Henny C, Newman DK (2013) Ligand-enhanced abiotic iron oxidation and the effects of chemical versus biological iron cycling in anoxic environments. Environ Sci Technol 47:2602–2611CrossRefGoogle Scholar
  21. 21.
    Hegler F, Schmidt C, Schwarz H, Kappler A (2010) Does a low-pH microenvironment around phototrophic FeII-oxidizing bacteria prevent cell encrustation by FeIII minerals? FEMS Microbiol Ecol 74:592–600CrossRefGoogle Scholar
  22. 22.
    APHA (2005) Standard Methods for the examination of water and wastewater. Association A.P.H, Washington, DCGoogle Scholar
  23. 23.
    Zhang M, Zheng P, Li W, Wang R, Ding S, Abbas G (2015) Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: a novel prospective technology for autotrophic denitrification. Bioresour Technol 179:543–548CrossRefGoogle Scholar
  24. 24.
    Weber KA, Pollock J, Cole KA, O’Connor SM, Achenbach LA, Coates JD (2006) Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002. Appl Environ Microbiol 72:686–694CrossRefGoogle Scholar
  25. 25.
    Waki M, Yasuda T, Yokoyama H, Hanajima D, Ogino A, Suzuki K, Yamagishi T, Suwa Y, Tanaka Y (2009) Nitrogen removal by co-occurring methane oxidation, denitrification, aerobic ammonium oxidation, and anammox. Appl Microbiol Biotechnol 84:977–985CrossRefGoogle Scholar
  26. 26.
    Adav SS, Lee D, Lai JY (2010) Enhanced biological denitrification of high concentration of nitrite with supplementary carbon source. Appl Microbiol Biotechnol 85:773–778CrossRefGoogle Scholar
  27. 27.
    Coby AJ, Picardal FW (2005) Inhibition of NO3 and NO2 reduction by microbial Fe(III) reduction: evidence of a reaction between NO2 and cell surface-bound Fe2+. Appl Environ Microbiol 71:5267–5274CrossRefGoogle Scholar
  28. 28.
    Cooper DC, Picardal FW, Schimmelmann A, Coby AJ (2003) Chemical and biological interactions during nitrate and goethite reduction by Shewanella putrefaciens 200. Appl Environ Microbiol 69:3517–3525CrossRefGoogle Scholar
  29. 29.
    Schaedler S, Burkhardt C, Hegler F, Straub KL, Miot J, Benzerara K, Kappler A (2009) Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxidizing bacteria. Geomicrobiol J 26:93–103CrossRefGoogle Scholar
  30. 30.
    Dippon U, Pantke C, Porsch K, Larese-Casanova P, Kappler A (2012) Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1. Environ Sci Technol 46:6556–6565CrossRefGoogle Scholar
  31. 31.
    Miot J, Benzerara K, Morin G, Kappler A, Bernard S, Obst M, Ferard C, Skouri-Panet F, Guigner J, Posth N, Galvez M Jr, Brown GE, Guyot F (2009) Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochim Cosmochim Acta 73:696–711CrossRefGoogle Scholar
  32. 32.
    Dong X, Zhang Y, Zhou J, Chen M, Wang X, Shi Z (2013) Fe(II)EDTA–NO reduction coupled with Fe(II)EDTA oxidation by a nitrate- and Fe(III)-reducing bacterium. Bioresour Technol 138:339–344CrossRefGoogle Scholar
  33. 33.
    Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62:1458–1460Google Scholar
  34. 34.
    Muehe EM, Gerhardt S, Schink B, Kappler A (2009) Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria. FEMS Microbiol Ecol 70:335–343CrossRefGoogle Scholar
  35. 35.
    Nguyen TAH, Ngo HH, Guo WS, Nguyen TV, Zhang J, Liang S, Chen SS, Nguyen NC (2014) A comparative study on different metal loaded soybean milk by-product ‘okara’ for biosorption of phosphorus from aqueous solution. Bioresour Technol 169:291–298CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Civil EngineeringWuhan UniversityWuhanChina
  2. 2.School of Urban ConstructionWuhan University of Science and TechnologyWuhanChina
  3. 3.Northeast Electric Power Design InstituteChangchunChina
  4. 4.Central and Southern China Municipal Engineering Design and Research InstituteWuhanChina

Personalised recommendations