Advertisement

Bioprocess and Biosystems Engineering

, Volume 38, Issue 11, pp 2167–2175 | Cite as

Mechanism of triphenylmethane Cresol Red degradation by Trichoderma harzianum M06

  • Nurafifah Mohd Nor
  • Tony HadibarataEmail author
  • Meor Mohd Fikri Ahmad Zubir
  • Zainab Mat Lazim
  • Liyana Amalina Adnan
  • Mohamad Ali Fulazzaky
Original Paper

Abstract

Cresol Red belongs to the triphenylmethane (TPM) class of dyes which are potentially carcinogenic or mutagenic. However, very few studies on biodegradation of Cresol Red were investigated as compared to other type dyes such as azo and anthraquinone dye. The aim of this work is to evaluate triphenylmethane dye Cresol Red degradation by fungal strain isolated from the decayed wood in Johor Bahru, Malaysia. Detailed taxonomic studies identified the organisms as Trichoderma species and designated as strain Trichoderma harzianum M06. In this study, Cresol Red was decolorized up to 88 % within 30 days under agitation condition by Trichoderma harzianum M06. Data analysis revealed that a pH value of 3 yielded a highest degradation rate among pH concentrations (73 %), salinity concentrations of 100 g/L (73 %), and a volume of 0.1 mL of Tween 80 (79 %). Induction in the enzyme activities of manganese peroxidase, lignin peroxidase, laccase, 1,2- and 2,3-dioxygenase indicates their involvement in Cresol Red removal. Various analytical studies such as Thin-Layer Chromatography (TLC), UV–Vis spectrophotometer, and Gas chromatography mass spectrometry (GC–MS) confirmed the biotransformation of Cresol Red by the fungus. Two metabolites were identified in the treated medium: 2,4-dihydroxybenzoic acid (t R 7.3 min and m/z 355) and 2-hydroxybenzoic acid (t R 8.6 min and m/z 267). Based on these products, a probable pathway has been proposed for the degradation of Cresol Red by Trichoderma harzianum M06.

Keywords

2,4-Dihydroxybenzoic acid 2-Hydroxybenzoic acid Cresol Red Decolorization Trichoderma harzianum M06 Triphenylmethane dye 

Notes

Acknowledgments

A part of this research was financially supported by a Fundamental Research Grant Scheme (FRGS) of Ministry of High Education Malaysia (Vote No. R.J130000.7809.4F465) and a Science Fund of Ministry of Science, Technology and Innovation Malaysia (Vote No. R.J130000.7909.4S110).

References

  1. 1.
    Revankar M, Lele S (2007) Synthetic dye decolorization by white rot fungus Ganoderma sp. WR-1. Bioresour Technol 98:775–780CrossRefGoogle Scholar
  2. 2.
    Selvam K, Swaminathan K, Chae KS (2003) Microbial decolorization of azo dyes and dye industry effluent by Fomes lividus. World J Microbiol Biotechnol 19:591–593CrossRefGoogle Scholar
  3. 3.
    Zabłocka-Godlewska E, Przystas W, Grabinska-Sota E (2009) Decolorization of triphenylmethane dyes and ecotoxicity of their end products. Environ Protect Eng 35:161–169Google Scholar
  4. 4.
    Azmi W, Sani RK, Banerjee UC (1997) Biodegradation of triphenylmethane dyes. Enzyme Microbial Technol 22:185–191CrossRefGoogle Scholar
  5. 5.
    Gill PK, Arora DS, Chander M (2002) Biodecolorization of azo and triphenylmethane dyes by Dichomitus squalens and Phlebia spp. J Industrial Microbiol Biotechnol 28:201–203CrossRefGoogle Scholar
  6. 6.
    Nigam P, Banat I, Singh D, Marchant R (1996) Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem 31:435–442CrossRefGoogle Scholar
  7. 7.
    McMullan G, Meehan C, Conneely A, Kirby N, Robinson T, Nigam P, Banat I, Marchant R, Smyth W (2001) Microbial decolorization and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87CrossRefGoogle Scholar
  8. 8.
    Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores Technol 77:247–255CrossRefGoogle Scholar
  9. 9.
    Margesin R (2000) Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int Biodeter Biodeg 46:3–10CrossRefGoogle Scholar
  10. 10.
    Hadibarata T, Yusoff ARM, Kristanti RA (2012) Acceleration of anthraquinone-type dye removal by white-rot fungus under optimized environmental conditions. Water Air Soil Poll 223:4669–4677CrossRefGoogle Scholar
  11. 11.
    Balan DSL, Monteiro RTR (2001) Decolorization of textile indigo dye by ligninolytic fungi. J Biotechnol 89:141–145CrossRefGoogle Scholar
  12. 12.
    El-Sheekh MM, Gharieb MM, Abou-El-Souod GW (2009) Biodegradation of dyes by some green algae and cyano bacteria. Int Biodeter Biodegr 63:699–704CrossRefGoogle Scholar
  13. 13.
    Sirianuntapiboon S, Phothilangka P, Ohmomo S (2004) Decolorization of molasses wastewater by a strain No.BP103 of acetogenic bacteria. Biores Technol 92:31–39CrossRefGoogle Scholar
  14. 14.
    Swamy J, Ramsay JA (1999) The evaluation of white rot fungi in the decolouration of textile dyes. Enzyme Microbial Technol 24:130–137CrossRefGoogle Scholar
  15. 15.
    Yang Q, Yediler A, Yang M, Kettrup A (2005) Decolorization of an azo dye, reactive black 5 and MnP production by yeast isolate Debaryomyces polymorphus. Biochem Eng J 24:249–253CrossRefGoogle Scholar
  16. 16.
    Zhou W, Zimmermann W (1993) Decolorization of industrial effluents containing reactive dyes by actinomycetes. FEMS Microb Lett 107:157–162CrossRefGoogle Scholar
  17. 17.
    Alexander M (1999) Biodegradation and bioremediation. Academic press, New YorkGoogle Scholar
  18. 18.
    Pandey G, Paul D, Jain RK (2005) Conceptualizing “suicidal genetically engineered microorganisms” for bioremediation applications. Biochem Biophys Res Com 327:637–639CrossRefGoogle Scholar
  19. 19.
    Bunching S, Britz ML Stanley GA (2000) Degradation of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial co-cultures. App Environ Microbiol 3:1007–1019Google Scholar
  20. 20.
    Hadibarata T, Yusoff ARM, Adnan LA, Yuniarto A, Rubiyatno Zubir MMFA, Khudhair AB, Teh ZC, Naser MA (2013) Microbial decolorization of an azo dye Reactive Black 5 using white-rot fungus Pleurotus eryngii F032. Water Air Soil Poll 224:1595–1604CrossRefGoogle Scholar
  21. 21.
    Hadibarata T, Kristanti RA (2012) Effect of environmental factors in the decolorization of Remazol Brilliant Blue R by Polyporus sp. S133. J Chil Chem Soc 57:1095–1098CrossRefGoogle Scholar
  22. 22.
    Hadibarata Khudhair AB, Salim MR (2012) Breakdown products in the metabolic pathway of anthracene degradation by a ligninolytic fungus Polyporus sp. S133. Water Air Soil Poll 223:2201–2208CrossRefGoogle Scholar
  23. 23.
    Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825CrossRefGoogle Scholar
  24. 24.
    Hofrichter M, Bublitz F, Fritsche W (1997) Fungal attack on coal. II. Solubilization of low-rank coal filamentous fungi. Fuel Process Technol 52:55–64CrossRefGoogle Scholar
  25. 25.
    Blanquez P, Casas N, Font X, Gabarrell X, Sarra M, Caminal G, Vicent T (2004) Mechanism of textile metal dye biotransformation by Trametes versicolor. Water Res 38:2166–2172CrossRefGoogle Scholar
  26. 26.
    Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus Niger. Biores Technol 70:95–104CrossRefGoogle Scholar
  27. 27.
    Toh YC, Yen JJL, Jeffrey PO, Ting YP (2003) Decolourisation of azo dyes by white-rot fungi (WRF) isolated in Singapore. Enzyme Microbial Technol 35:569–575CrossRefGoogle Scholar
  28. 28.
    Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SM (2007) Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol 98:2082–2088CrossRefGoogle Scholar
  29. 29.
    Kibbey TCG, Hayes KF (2001) Effects of surfactant concentration and sorbed properties on the sorption and transport of ethoxylated non-ionic surfactant mixture. J Contamin Hydrol 41:1–22CrossRefGoogle Scholar
  30. 30.
    Raghukumar C, Chandramohan D, Michel FC, Reddy CA (1996) Degradation of lignin and decolorization of paper mill bleach plant effluent (BPE) by marine fungi. Biotechnol Lett 18:105–106CrossRefGoogle Scholar
  31. 31.
    Sarnaik S, Kanekar P (1999) Biodegradation of methyl violet by Pseudomonas mendocina MCMB 402. Appl Microbiol Biotechnol 52:251–254CrossRefGoogle Scholar
  32. 32.
    Pointing SB, Vrijmoed LLP (2000) Decolorization of azo and triphenylmethanedyes by Pycnoporus sanguineus producing laccase as the sole phenol oxidase. World J Microbiol Biotechnol 16:317–318CrossRefGoogle Scholar
  33. 33.
    Cha C, Doerge DR, Cerniglia CE (2001) Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl Environ Microbiol 67:4353–4360CrossRefGoogle Scholar
  34. 34.
    Jadhav JP, Kalyani DC, Telke AA, Phugare SS, Govindwar SP (2010) Evaluation of efficacy of bacterial consortium for the removal of colour, reduction of heavy metals and toxicity from textile effluent. Bioresour Technol 101:165–173CrossRefGoogle Scholar
  35. 35.
    Casas N, Parella T, Vicent T, Caminal G, Sarra M (2009) Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase. Chemosphere 75(10):1344–1349CrossRefGoogle Scholar
  36. 36.
    Shedbalkar U, Dhanve R, Jadhav J (2008) Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. J Hazard Mater 157:472–473CrossRefGoogle Scholar
  37. 37.
    Hadibarata T, Tachibana S, Itoh K (2007) Biodegradation of n-eicosane by fungi screened from nature. Pak J Biol Sci 10:1804–1810CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Nurafifah Mohd Nor
    • 1
    • 2
  • Tony Hadibarata
    • 1
    • 2
    Email author
  • Meor Mohd Fikri Ahmad Zubir
    • 2
  • Zainab Mat Lazim
    • 1
    • 2
  • Liyana Amalina Adnan
    • 3
  • Mohamad Ali Fulazzaky
    • 1
    • 2
  1. 1.Centre for Environmental Sustainability and Water Security (IPASA), Research Institute for Sustainable EnvironmentUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Department of Environmental Engineering, Faculty of Civil EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia
  3. 3.Department of Chemistry, Faculty of ScienceUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations