Bioprocess and Biosystems Engineering

, Volume 38, Issue 9, pp 1773–1781 | Cite as

Biosynthesis of silver nanoparticles and its antibacterial and antifungal activities towards Gram-positive, Gram-negative bacterial strains and different species of Candida fungus

  • RahisuddinEmail author
  • Shaeel Ahmed AL-Thabaiti
  • Zaheer Khan
  • Nikhat Manzoor
Original Paper


Biomimetic and economic method for the synthesis of silver nanoparticles (AgNPs) with controlled size has been reported in presence of shape-directing cetlytrimethylammonium bromide (CTAB). Biochemical reduction of Ag+ ions in micellar solution with an aqueous lemon extract produced spherical and polyhedral AgNPs with size ranging from 15 to 30 nm. The influence of [CTAB] and [lemon extract] on the size of particles, fraction of metallic silver and their antimicrobial properties is discussed. The AgNPs were evaluated for their antimicrobial activities (antibacterial and antifungal) against different pathogenic organisms. For this purpose, AgNPs were tested against two model bacteria (Staphylococcus aureus (MTCC3160) and Escherichia coli (MTCC405)) and three species of Candida fungus (Candida albicans (ATCC90028), Candida glabrata (ATCC90030) and Candida tropicalis (ATCC750). AgNPs were found to be highly toxic towards both bacteria. The inhibition action was due to the structural changes in the protein cell wall.


Antimicrobial activity Biosynthesis Nanoparticles Candida fungus 


  1. 1.
    Clement JL, Jarrett PL (1994) Met-Based Drugs 1(5–6):467–482CrossRefGoogle Scholar
  2. 2.
    Lansdown, Alan BG (2010) Silver in healthcare: Its antimicrobial efficacy and safety in use. Royal Soc Chem 159, ISBN 1-84973-006-7Google Scholar
  3. 3.
    Geranio L, Heuberger M, Nowack B (2009) Environ Sci Technol 43:8113–8118CrossRefGoogle Scholar
  4. 4.
    Maillard JY, Hartemann P (2013) Crit Rev Microbiol 39:373–383CrossRefGoogle Scholar
  5. 5.
    Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) Crit Rev Toxicol 40(4):328–346CrossRefGoogle Scholar
  6. 6.
    Rai M, Yadav A, Gade A (2009) Biotechnology Adv 27:76–83CrossRefGoogle Scholar
  7. 7.
    Fendler JH (1987) Chem Rev 87:877–899CrossRefGoogle Scholar
  8. 8.
    Henglein A (1993) J Phys Chem 97:5457–5471CrossRefGoogle Scholar
  9. 9.
    Sun Y, Mayers B, Xia Y (2003) Nano Lett 3(5):675–679CrossRefGoogle Scholar
  10. 10.
    Yu D, Yam VW (2004) J Am Chem Soc 126:13200–13201CrossRefGoogle Scholar
  11. 11.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025–1102CrossRefGoogle Scholar
  12. 12.
    Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) Chem Soc Rev 41:2740–2779CrossRefGoogle Scholar
  13. 13.
    Lu H, Zhang H, Yu X, Zeng S, Yong KT, Ho HP (2012) Plasmonics 7:167–173CrossRefGoogle Scholar
  14. 14.
    Sinha AK, Basu M, Sarkar S, Pradhan M, Pal T (2013) J Colloid Interf Sci 398:13–21CrossRefGoogle Scholar
  15. 15.
    Singh A, Kaur S, Kaur A, Aree T, Kaur N, Singh N, Bakshi MS (2014) ACS Sustainable. Chem Eng 2:982–990Google Scholar
  16. 16.
    Bakshi MS (2011) J Phys Chem 115:13947–13960Google Scholar
  17. 17.
    Sun Y, Xia Y (2002) Science 298:2176–2179CrossRefGoogle Scholar
  18. 18.
    Khan Z, Al-Thabaiti SA, Obaid AY, Khan ZA, Al-Youbi AO (2012) J Colloid Interf Sci 367:101–108CrossRefGoogle Scholar
  19. 19.
    Khan Z, AL-Thabaiti SA, El-Mossalamy EH, Obaid AY (2013) Mater Res Bull 48:1137–1143CrossRefGoogle Scholar
  20. 20.
    Hussain S, Akrema, Rahisuddin, Khan Z (2014) Bioproc Biosyst Eng 37:953–964CrossRefGoogle Scholar
  21. 21.
    Bashir O, Hussain S, Al-Thabaiti SA, Khan Z (2014) Carbohyd Polym 107:167–173CrossRefGoogle Scholar
  22. 22.
    Yu D, Yam VWW (2004) J Am Chem Soc 126(2004):13200–13201CrossRefGoogle Scholar
  23. 23.
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) J Biomed Mater Res 52:662–668CrossRefGoogle Scholar
  24. 24.
    Brigger I, Dubernet C, Couvreur P (2004) Adv Drug Deliver Rev 54:6310Google Scholar
  25. 25.
    Song HY, Ko KK, Oh IH, Lee BT (2006) Eur Cells Mater 11:58Google Scholar
  26. 26.
    Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian MS (2007) Nanomedicine 3:168–171CrossRefGoogle Scholar
  27. 27.
    Guzman MG, Dille J, Godet S (2009) Int J Chem Biol Eng 2:104–111Google Scholar
  28. 28.
    Sharma VK, Yngard RA, Lin Y (2009) Adv Colloid Interf Sci 145:83–96CrossRefGoogle Scholar
  29. 29.
    Dong PV, Ha CH, Binh LT, Kasbohm J (2012) Int Nano Lett 2:9CrossRefGoogle Scholar
  30. 30.
    Shankar SS, Rai A, Ahmad A, Sastry M (2004) J Colloid Interf Sci 275:496–502CrossRefGoogle Scholar
  31. 31.
    Khan Z, Hussain JI, Hashmi AA (2012) Colloid Surface B 98:85–90CrossRefGoogle Scholar
  32. 32.
    Hussain S, Khan Z (2014) Bioproc Biosyst Eng 37:1221–1231CrossRefGoogle Scholar
  33. 33.
    Vandercook CE, Stephenson RG (1966) J Agric Food Chem 14:450–454CrossRefGoogle Scholar
  34. 34.
    Okwi DE, Emenike IN (2006) International J Mol Med Ad Sci 2:1–6Google Scholar
  35. 35.
    Okwu DE, Emenike IN (2007) J Food Technology 5:105–108Google Scholar
  36. 36.
    Garcia OB, Castillo J, Marin JR, Ortuno A, Del Rio JA (1997) J Agric Food Chem 45:4505–4515CrossRefGoogle Scholar
  37. 37.
    Vinson JA, Su X, Zubik L, Bose P (2001) J Agric Food Chem 49:5315–5321CrossRefGoogle Scholar
  38. 38.
    Penniston KL, Nakada SY, Holmes RP, Assimos DG (2008) J Endourolo 22:567–570CrossRefGoogle Scholar
  39. 39.
    Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Colloid Surface B 82:152–159CrossRefGoogle Scholar
  40. 40.
    Prathna TC, Raichur AM, Chandrasekaran N, Mukherjee A (2014) Proc Natl Acad Sci India B Biol Sci 84:65–70CrossRefGoogle Scholar
  41. 41.
    Vankar PS, Shukla D (2012) Appl Nanosci 2:163–168CrossRefGoogle Scholar
  42. 42.
    Nisha NS, Aysha OS, Rahaman SNJ, Kumar VP, Valli S, Nirmal P, Reen A (2014) Spcetrochim Acta A Mol Biomol Spectrosc 124:194–201CrossRefGoogle Scholar
  43. 43.
    Hussain S, Al-Thabaiti SA, Khan Z (2014) Bioprocess Biosyst Eng 37:1727–1735CrossRefGoogle Scholar
  44. 44.
    Sigmann SB, Wheeler DE (2004) J Chem Ed 81:1479–1481CrossRefGoogle Scholar
  45. 45.
    Pal S, Kyung Y, Song JM (2007) App Env Microbiol 73:1712–1720CrossRefGoogle Scholar
  46. 46.
    Jin R, Cho YW, Markin CA, Kelly KL, Schatz GC, Zheng JG (2001) Science 294:1901–1903CrossRefGoogle Scholar
  47. 47.
    Linnert T, Mulvaney P, Hanglein A, Weller H (1990) J Am Chem Soc 112:4657–4664CrossRefGoogle Scholar
  48. 48.
    Song JY, Kim BS (2009) Bioprocess Biosyst Eng 32:79–84CrossRefGoogle Scholar
  49. 49.
    Ershov BG, Henglein A (1998) J Phys Chem B 102:10663–10666CrossRefGoogle Scholar
  50. 50.
    Mostafavi M, Dey GR, François L, Belloni J (2002) J Phys Chem A 106:10184–10194CrossRefGoogle Scholar
  51. 51.
    Keuk-Jun K, Woo SS, Bo KS, Seok-Ki M, Jong-Soo C, Jong GK, Dong GL (2009) Biometals 22:235–242CrossRefGoogle Scholar
  52. 52.
    Sondi I, Salopek-Sondi B (2004) J Colloid Interf Sci 275:177–182CrossRefGoogle Scholar
  53. 53.
    Ales PC, Milan K, Renata V, Robert P, Jana S, Vladimir K, Petr H, Radek Z, Libor K (2009) Biomaterials 30:6333–6340CrossRefGoogle Scholar
  54. 54.
    Rai M, Yadav A, Gade A (2009) Biotechnol Adv 27:76–83CrossRefGoogle Scholar
  55. 55.
    Klasen HJ (2000) Burns 30:1–9Google Scholar
  56. 56.
    Khan Z, Talib A (2010) Colloid Surface B 76:164–169CrossRefGoogle Scholar
  57. 57.
    Kamat PV, Flumiani M, Hartland GV (1998) J Phys Chem B 102:3123–3128CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rahisuddin
    • 1
    Email author
  • Shaeel Ahmed AL-Thabaiti
    • 2
  • Zaheer Khan
    • 2
  • Nikhat Manzoor
    • 3
  1. 1.Department of ChemistryJamia Millia Islamia (Central University)New DelhiIndia
  2. 2.Department of Chemistry, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of Medical Laboratories TechnologyTaibah UniversityMadinahKingdom of Saudi Arabia

Personalised recommendations