Bioprocess and Biosystems Engineering

, Volume 38, Issue 9, pp 1705–1713 | Cite as

Enhancement of ε-poly-lysine production in ε-poly-lysine-tolerant Streptomyces sp. by genome shuffling

  • Yong-Peng Zhou
  • Xi-Dong Ren
  • Liang Wang
  • Xu-Sheng Chen
  • Zhong-Gui Mao
  • Lei Tang
Original Paper


ε-Poly-l-lysine (ε-PL) has been widely used as food additive. However, the self-inhibition of ε-PL on cell growth limits the accumulation of ε-PL in the wild-type strain. Here, we screened ε-PL-tolerant strain of Streptomyces sp. with higher ε-PL productivity by genome shuffling and studied the mechanism for the improvement. The initial mutant library was constructed by diethyl sulfate mutagenesis. After four rounds of protoplast fusion, a shuffled strain F4-22 with 3.11 g/L ε-PL productivity in shake flask, 1.81-fold in comparison with that of parent strain, was obtained. The higher aspartokinase activity was induced in F4-22 whereas no obvious changes have been found in ε-PL synthetic and degrading enzymes which indicated that the upstream reregulation of the precursor lysine synthesis rather than lysine polymerization or ε-PL degradation in shuffled strain accounted for the higher productivity. The activities of key enzymes in the central metabolic pathway were also enhanced in F4-22 which resulted in increased vigor of the strain and in delayed strain lysis during fermentation. These improved properties of shuffled strain led to the success of combining general two-stage fermentation into one-stage one in 5-L bioreactor with 32.7 % more ε-PL production than that of parent strain. The strategy used in this study provided a novel strain breeding approach of producers which suffered from ε-PL-like self-inhibition of the metabolites.


Aspartokinase Genome shuffling ε-Poly-l-lysine Streptomyces sp. Tolerant strain 



This research was financially supported by the National Natural Science Foundation of China (Grant No. 21376106), the Program of Introducing Talents of Discipline to Universities (111-2-06).


  1. 1.
    Shima S, Sakai H (1981) Poly-l-lysine produced by Streptomyces. Part II. Taxonomy and fermentation studies. Agric Biol Chem 45(11):2497–2502. doi: 10.1080/00021369.1981.10864929 CrossRefGoogle Scholar
  2. 2.
    Shima S, Sakai H (1977) Polylysine produced by Streptomyces. Agric Biol Chem 41(9):1807–1809CrossRefGoogle Scholar
  3. 3.
    Shima S, Matsuoka H, Iwamoto T, Sakai H (1984) Antimicrobial action of ε-poly-l-lysine. J Antibiot 37(11):1449–1455CrossRefGoogle Scholar
  4. 4.
    Hiraki J, Ichikawa T, Ninomiya S, Seki H, Uohama K, Seki H, Kimura S, Yanagimoto Y, Barnett JW Jr (2003) Use of ADME studies to confirm the safety of ε-polylysine as a preservative in food. Regul Toxicol Pharmacol 37(2):328–340. doi: 10.1016/S0273-2300(03)00029-1 CrossRefGoogle Scholar
  5. 5.
    Shih IL, Shen MH, Van YT (2006) Microbial synthesis of poly(ε-lysine) and its various applications. Bioresour Technol 97(9):1148–1159. doi: 10.1016/j.biortech.2004.08.012 CrossRefGoogle Scholar
  6. 6.
    Hirohara H, Takehara M, Saimura M, Masayuki A, Miyamoto M (2006) Biosynthesis of poly(ε-l-lysine)s in two newly isolated strains of Streptomyces sp. Appl Microbiol Biotechnol 73(2):321–331. doi: 10.1007/s00253-006-0479-2 CrossRefGoogle Scholar
  7. 7.
    Li S, Tang L, Chen X, Liao L, Li F, Mao Z (2011) Isolation and characterization of a novel ε-poly-l-lysine producing strain: Streptomyces griseofuscus. J Ind Microbiol Biotechnol 38(4):557–563. doi: 10.1007/s10295-010-0803-9 CrossRefGoogle Scholar
  8. 8.
    Ouyang J, Xu H, Li S, Zhu H, Chen W, Zhou J, Wu Q, Xu L, Ouyang P (2006) Production of ε-poly-l-lysine by newly isolated Kitasatospora sp. PL6-3. Biotechnol J 1(12):1459–1463. doi: 10.1002/biot.200600079 CrossRefGoogle Scholar
  9. 9.
    EI-Sersy NA, Abdelwahab AE, Abouelkhiir SS, Abou-Zeid DM, Sabry SA (2012) Antibacterial and anticancer activity of ε-poly-l-lysine (ε-PL) produced by a marine Bacillus subtilis sp. J Basic Microbiol 52(5):513–522. doi: 10.1002/jobm.201100290 CrossRefGoogle Scholar
  10. 10.
    Hamano Y, Yoshida T, Kito M, Nakamori S, Nagasawa T, Takagi H (2006) Biological function of the pld gene product that degrades ε-poly-l-lysine in Streptomyces albulus. App Microbiol Biotechnol 72(1):173–181. doi: 10.1007/s00253-006-0396-4 CrossRefGoogle Scholar
  11. 11.
    Kito M, Takimoto R, Yoshida T, Nagasawa T (2002) Purification and characterization of an ε-poly-l-lysine-degrading enzyme from an ε-poly-l-lysine-producing strain of Streptomyces albulus. Arch Microbiol 178(5):325–330. doi: 10.1007/s00203-002-0459-6 CrossRefGoogle Scholar
  12. 12.
    Hiraki J, Hatakeyama M, Morita H, Izumi Y (1998) Improved ε-poly-l-lysine production of an S-(2-aminoethyl)-l-cysteine resistant mutant of Streptomyces albulus. Seibutsu Kogaku Kaishi 76(12):487–493Google Scholar
  13. 13.
    Zhang Y, Feng X, Xu H, Yao Z, Ouyang P (2010) ε-Poly-l-lysine production by immobilized cells of Kitasatospora sp. MY 5-36 in repeated fed-batch cultures. Bioresour Technol 101(14):5523–5527. doi: 10.1016/j.biortech.2010.02.021 CrossRefGoogle Scholar
  14. 14.
    Liu S, Wu Q, Zhang J, Mo S (2011) Production of ε-poly-l-lysine by Streptomyces sp. using resin-based, in situ product removal. Biotechnol Lett 33(8):1581–1585. doi: 10.1007/s10529-011-0616-6 CrossRefGoogle Scholar
  15. 15.
    Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WP, del Cardayré SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415(6872):644–646. doi: 10.1038/415644a CrossRefGoogle Scholar
  16. 16.
    Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36(1):139–147. doi: 10.1007/s10295-008-0481-z CrossRefGoogle Scholar
  17. 17.
    Stephanopoulos G (2002) Metabolic engineering by genome shuffling. Nat Biotechnol 20(7):666–668. doi: 10.1038/nbt0702-666 CrossRefGoogle Scholar
  18. 18.
    Zhang J, Wang X, Diao J, He H, Zhang Y, Xiang W (2013) Streptomycin resistance-aided genome shuffling to improve doramectin productivity of Streptomyces avermitilis NEAU1069. J Ind Microbiol Biotechnol 40(8):877–889. doi: 10.1007/s10295-013-1280-8 CrossRefGoogle Scholar
  19. 19.
    Zhang P, Zhang K, Yan Q, Xu Y, Sun Z (2013) Enhanced succinic acid production by Actinobacillus succinogenes after genome shuffling. J Ind Microbiol Biotechnol 40(8):831–840. doi: 10.1007/s10295-013-1283-5 CrossRefGoogle Scholar
  20. 20.
    Nishikawa M, Ogawa K (2002) Distribution of microbes producing antimicrobial ε-poly-l-lysine polymers in soil microflora determined by a novel method. Appl Environ Microbiol 68(7):3575–3581. doi: 10.1128/AEM.68.7.3575-3581.2002 CrossRefGoogle Scholar
  21. 21.
    Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces-A laboratory manual. The John Innes Foundation, Norwich, UK and Cold Spring Harbour Laboratory. pp 356Google Scholar
  22. 22.
    Li S, Li F, Chen XS, Wang L, Xu J, Tang L, Mao ZG (2012) Genome shuffling enhanced ε-poly-l-lysine production by improving glucose tolerance of Streptomyces graminearus. Appl Biochem Biotechnol 166(2):414–423. doi: 10.1007/s12010-011-9437-2 CrossRefGoogle Scholar
  23. 23.
    Chen XS, Li S, Liao LJ, Ren XD, Li F, Tang L, Zhang JH, Mao ZG (2011) Production of ε-poly-l-lysine using a novel two-stage pH control strategy by Streptomyces sp. M-Z18 from glycerol. Bioprocess Biosyst Eng 34(5):561–567. doi: 10.1007/s00449-010-0505-8 CrossRefGoogle Scholar
  24. 24.
    Kahar P, Iwata T, Hiraki J, Park EY, Okabe M (2001) Enhancement of ε-polylysine production by Streptomyces albulus strain 410 using pH control. J Biosci Bioeng 91(2):190–194. doi: 10.1016/S1389-1723(01)80064-5 CrossRefGoogle Scholar
  25. 25.
    Zeng X, Chen XS, Ren XD, Liu QR, Wang L, Sun QX, Tang L, Mao ZG (2014) Insights into the role of glucose and glycerol as a mixed carbon source in the improvement of ε-poly-l-lysine productivity. Appl Biochem Biotechnol 173(8):2211–2224. doi: 10.1007/s12010-014-1026-8 CrossRefGoogle Scholar
  26. 26.
    Wang Y, Li Y, Pei X, Yu L, Feng Y (2007) Genome-shuffling improved acid tolerance and l-lactic acid volumetric productivity in Lactobacillus rhamnosus. J Biotechnol 129(3):510–515. doi: 10.1016/j.jbiotec.2007.01.011 CrossRefGoogle Scholar
  27. 27.
    Xu B, Jin Z, Wang H, Jin Q, Jin X, Cen P (2008) Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling. Appl Microbiol Biotechnol 80(2):261–267. doi: 10.1007/s00253-008-1540-0 CrossRefGoogle Scholar
  28. 28.
    Imada C, Ikemoto Y, Kobayashi T, Hamada N, Watanabe E (2002) Isolation and characterization of the interspecific fusants from Streptomycetes obtained using a liquid regeneration method. Fish Sci 68(2):395–402. doi: 10.1046/j.1444-2906.2002.00438.x CrossRefGoogle Scholar
  29. 29.
    Hamano Y, Nicchu I, Shimizu T, Onji Y, Hiraki J, Takagi H (2007) ε-P-l-lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase. Appl Micobiol Biotechnol 76(4):873–882. doi: 10.1007/s00253-007-1052-3 CrossRefGoogle Scholar
  30. 30.
    Ye R, Xu H, Wan C, Peng S, Wang L, Xu H, Aguilar ZP, Xiong Y, Zeng Z, Wei H (2013) Antibacterial activity and mechanism of action of ε-poly-l-lysine. Biochem Biophys Res Commun 493(1):148–153. doi: 10.1016/j.bbrc.2013.08.001 CrossRefGoogle Scholar
  31. 31.
    Shih IL, Shen MH (2006) Optimization of cell growth and poly(ε-lysine) production in batch and fed-batch cultures by Streptomyces albulus IFO 14147. Process Biochem 41(7):1644–1649. doi: 10.1016/j.procbio.2006.03.013 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yong-Peng Zhou
    • 1
  • Xi-Dong Ren
    • 1
  • Liang Wang
    • 1
  • Xu-Sheng Chen
    • 1
  • Zhong-Gui Mao
    • 1
  • Lei Tang
    • 1
  1. 1.Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuxiChina

Personalised recommendations