Advertisement

Bioprocess and Biosystems Engineering

, Volume 38, Issue 9, pp 1639–1644 | Cite as

Whole slurry saccharification and fermentation of maleic acid-pretreated rice straw for ethanol production

  • Young Hoon Jung
  • Hyun Min Park
  • Kyoung Heon KimEmail author
Original Paper

Abstract

We evaluated the feasibility of whole slurry (pretreated lignocellulose) saccharification and fermentation for producing ethanol from maleic acid-pretreated rice straw. The optimized conditions for pretreatment were to treat rice straw at a high temperature (190 °C) with 1 % (w/v) maleic acid for a short duration (3 min ramping to 190 °C and 3 min holding at 190 °C). Enzymatic digestibility (based on theoretical glucose yield) of cellulose in the pretreated rice straw was 91.5 %. Whole slurry saccharification and fermentation of pretreated rice straw resulted in 83.2 % final yield of ethanol based on the initial quantity of glucan in untreated rice straw. These findings indicate that maleic acid pretreatment results in a high yield of ethanol from fermentation of whole slurry even without conditioning or detoxification of the slurry. Additionally, the separation of solids and liquid is not required; therefore, the economics of cellulosic ethanol fuel production are significantly improved. We also demonstrated whole slurry saccharification and fermentation of pretreated lignocellulose, which has rarely been reported.

Keywords

Lignocellulose Pretreatment Maleic acid Ethanol Whole slurry fermentation 

Notes

Acknowledgments

This work was supported by grants from the Ministry of Trade, Industry & Energy (10047873 and 10049674). A Korea University grant through the Korea University Food Safety Hall for the Institute of Biomedical Science and Food Safety is acknowledged.

References

  1. 1.
    Jung YH, Park HM, Kim IJ, Park Y-C, Seo J-H, Kim KH (2014) One-pot pretreatment, saccharification and ethanol fermentation of lignocellulose based on acid-base mixture pretreatment. RSC Adv 4:55318–55327CrossRefGoogle Scholar
  2. 2.
    Modenbach AA, Nokes SE (2012) The use of high-solids loadings in biomass pretreatment—a review. Biotechnol Bioeng 109:1430–1442CrossRefGoogle Scholar
  3. 3.
    Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang Y-HP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30CrossRefGoogle Scholar
  4. 4.
    Jung YH, Kim KH (2014) In: Pandey A, Negi S, Binod P, Larroche C (eds) Pretreatment of biomass: processes and technologies, 1st edn. Academic Press, MassachusettsGoogle Scholar
  5. 5.
    Liu ZL (2011) Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 90:809–825CrossRefGoogle Scholar
  6. 6.
    Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349CrossRefGoogle Scholar
  7. 7.
    Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26CrossRefGoogle Scholar
  8. 8.
    Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16CrossRefGoogle Scholar
  9. 9.
    Huang H, Guo X, Li D, Liu M, Wu J, Ren H (2011) Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids. Bioresour Technol 102:7486–7493CrossRefGoogle Scholar
  10. 10.
    Kim Y, Mosier NS, Ladisch MR, Pallapolu VR, Lee YY, Garlock R, Balan V, Dale BE, Donohoe BS, Vinzant TB, Elander RT, Falls M, Sierra R, Holtzapple MT, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE, Warner RE (2011) Comparative study on enzymatic digestibility of switchgrass varieties and harvests processed by leading pretreatment technologies. Bioresour Technol 102:11089–11096CrossRefGoogle Scholar
  11. 11.
    Ko JK, Bak JS, Jung MW, Lee HJ, Choi I-G, Kim TH, Kim KH (2009) Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour Technol 100:4374–4380CrossRefGoogle Scholar
  12. 12.
    Jung YH, Kim IJ, Han J-I, Choi I-G, Kim KH (2011) Aqueous ammonia pretreatment of oil palm empty fruit bunches for ethanol production. Bioresour Technol 102:9806–9809CrossRefGoogle Scholar
  13. 13.
    Jung YH, Kim IJ, Kim HK, Kim KH (2013) Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresour Technol 132:109–114CrossRefGoogle Scholar
  14. 14.
    Jung YH, Kim IJ, Kim HK, Kim KH (2014) Whole slurry fermentation of maleic acid-pretreated oil palm empty fruit bunches for ethanol production not necessitating a detoxification process. Bioproc Biosyst Eng 37:659–665CrossRefGoogle Scholar
  15. 15.
    Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J (2008) Laboratory Analytical Procedure: Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, NREL/TP-510-42621, Golden, COGoogle Scholar
  16. 16.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Laboratory Analytical Procedure: Determination of ash in biomass. National Renewable Energy Laboratory, NREL/TP-510-42622, Golden, COGoogle Scholar
  17. 17.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Laboratory Analytical Procedure: Determination of sugars, byproducts, and degradation products in liquid fraction process samples. National Renewable Energy Laboratory, NREL/TP-510-42623, Golden, COGoogle Scholar
  18. 18.
    Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Laboratory Analytical Procedure: Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, NREL/TP-510-42618, Golden, COGoogle Scholar
  19. 19.
    Adney B, Baker J (2008) Laboratory Analytical Procedure: Measurement of cellulase activities. National Renewable Energy Laboratory, NREL/TP-510-42628, Golden, COGoogle Scholar
  20. 20.
    Selig M, Weiss N, Ji Y (2008) Laboratory Analytical Procedure: Enzymatic saccharification of lignocellulosic biomass. National Renewable Energy Laboratory, NREL/TP-510-42629, Golden, COGoogle Scholar
  21. 21.
    Dowe N, McMillan (2008) Laboratory Analytical Procedure: SSF experimental protocols-lignocellulosic biomass hydrolysis and fermentation. National Renewable Energy Laboratory, NREL/TP-510-42630, Golden, COGoogle Scholar
  22. 22.
    Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM (2009) Optimization of the dilute maleic acid pretreatment of wheat straw. Biotechnol Biofuels 2:31CrossRefGoogle Scholar
  23. 23.
    Mosier NS, Sarikaya A, Ladisch CM, Ladisch MR (2001) Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog 17:474–480CrossRefGoogle Scholar
  24. 24.
    Hsu T-C, Guo G-L, Chen W-H, Hwang W-S (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101:4907–4913CrossRefGoogle Scholar
  25. 25.
    Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM (2009) Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem Eng J 46:126–131CrossRefGoogle Scholar
  26. 26.
    Lu Y, Mosier NS (2007) Biomimetic catalysis for hemicellulose hydrolysis in corn stover. Biotechnol Prog 23:116–123CrossRefGoogle Scholar
  27. 27.
    Lu Y, Mosier NS (2008) Kinetic modeling analysis of maleic acid-catalyzed hemicellulose hydrolysis in corn stover. Biotechnol Bioeng 101:1170–1181CrossRefGoogle Scholar
  28. 28.
    Mosier NS, Ladisch CM, Ladisch MR (2002) Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol Bioeng 79:610–618CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Young Hoon Jung
    • 1
  • Hyun Min Park
    • 1
  • Kyoung Heon Kim
    • 1
    Email author
  1. 1.Department of BiotechnologyKorea University Graduate SchoolSeoulRepublic of Korea

Personalised recommendations