Bioprocess and Biosystems Engineering

, Volume 38, Issue 8, pp 1469–1478 | Cite as

Ethanol production from rape straw by a two-stage pretreatment under mild conditions

  • Inmaculada RomeroEmail author
  • Juan C. López-Linares
  • Yaimé Delgado
  • Cristóbal Cara
  • Eulogio Castro
Original Paper


The growing interest on rape oil as raw material for biodiesel production has resulted in an increasing availability of rape straw, an agricultural residue that is an attractive renewable source for the production of second-generation bioethanol. Pretreatment is one of the key steps in such a conversion process. In this work, a sequential two-stage pretreatment with dilute sulfuric acid (130 °C, 60 min, 2 % w/v H2SO4) followed by H2O2 (1–5 % w/v) in alkaline medium (NaOH) at low temperature (60, 90 °C) and at different pretreatment times (30–90 min) was investigated. The first-acid stage allows the solubilisation of hemicellulose fraction into fermentable sugars. The second-alkaline peroxide stage allows the delignification of the solid material whilst the cellulose remaining in rape straw turned highly digestible by cellulases. Simultaneous saccharification and fermentation with 15 % (w/v) delignified substrate at 90 °C, 5 % H2O2 for 60 min, led to a maximum ethanol production of 53 g/L and a yield of 85 % of the theoretical.


Rape straw Sequential pretreatment Hydrogen peroxide Delignification Ethanol 



J.C. López-Linares gratefully acknowledges the research grant received from University of Jaén (Plan de Apoyo).


  1. 1.
    Zhang B (2013) Pretreatment technologies for production of lignocellulosic biofuels. Biomass Conv Bioref 329–345Google Scholar
  2. 2.
    Refaat A (2012) Biofuels from waste materials. In: Wilfried AS, Van Sark GJHM, Kaldellis JK, Kalogirou SA, Cruden AJ, Roddy DJ, Lejeune AGH, Sigfusson TI, Bahaj AS (eds) Comprehensive renewable energy. Elsevier, Amsterdam, pp 217–261CrossRefGoogle Scholar
  3. 3.
    Pinkowska H, Wolak P, Oliveros E (2013) Production of xylose and glucose from rapeseed straw in subcritical water—use of Doehlert design for optimizing the reaction conditions. Biomass Bioenerg 58:188–197CrossRefGoogle Scholar
  4. 4.
    FAOSTAT (2014) Accessed 01 Apr 2014
  5. 5.
    Arvaniti E (2012) Ethanol production from rape straw: part of an oilseed rape biorefinery. Ph.D. Dissertation, Technical University of DenmarkGoogle Scholar
  6. 6.
    Gupta A (2014) Use of cellulose for sustainable bioenergy production. Int J Appl Eng Res 9(2):239–240Google Scholar
  7. 7.
    Saddler J, Kumar L (2013) Pretreatment and fractionation of biomass for biorefinery/biofuels. Biotechnol Biofuels 6:17CrossRefGoogle Scholar
  8. 8.
    Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A Review. Int J Mol Sci 9:1621–1651CrossRefGoogle Scholar
  9. 9.
    Kaya F, Heitmann JA, Joyce TW (2000) Influence of lignin and its degradation products on enzymatic hydrolysis of xylan. J Biotechnol 80:241–247CrossRefGoogle Scholar
  10. 10.
    Wang K, Yang H, Chen Q, Sun RC (2013) Influence of delignification efficiency with alkaline peroxide on the digestibility of furfural residues for bioethanol production. Bioresour Technol 146:208–214CrossRefGoogle Scholar
  11. 11.
    Guo B, Zhang Y, Yu G, Lee WH, Jin YS, Morgenroth E (2013) Two-stage acidic-alkaline hydrothermal pretreatment of lignocellulose for the high recovery of cellulose and hemicellulose sugars. Appl Biochem Biotechnol 169:1069–1087CrossRefGoogle Scholar
  12. 12.
    Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref 2:26–40CrossRefGoogle Scholar
  13. 13.
    Kim S, Park JM, Seo J-W, Kim CH (2012) Sequential acid-alkali pretreatment of empty palm fruit bunch fiber. Bioresour Technol 109:229–233CrossRefGoogle Scholar
  14. 14.
    Kim SB, Lee SJ, Lee JH, Jung YR, Thapa LP, Kim JS, Um Y, Park C, Kim SW (2013) Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia. Biotechnol Biofuels 6:109CrossRefGoogle Scholar
  15. 15.
    de Souza CJA, Costa DA, Rodrigues MQRB, dos Santos AF, Lopes MR, Abrantes ABP, dos Santos Costa P, Silveira WB, Passos FML, Fietto LG (2012) The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse. Bioresour Technol 109:63–69CrossRefGoogle Scholar
  16. 16.
    Lima MA, Lavorente GB, da Silva HKP, Bragatto J, Rezende CA, Bernardinelli OD, de Azevedo ER, Gomez LD, McQueen-Mason S, Labate CA, Polikarpov I (2013) Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: a potentially valuable source of fermentable sugars for biofuel production—part 1. Biotechnol Biofuels 6:75CrossRefGoogle Scholar
  17. 17.
    López-Linares JC, Romero I, Cara C, Ruiz E, Castro E, Moya M (2014) Experimental study on ethanol production from hydrothermal pretreated rapeseed straw by simultaneous saccharification and fermentation. J Chem Technol Biotechnol 89:104–110CrossRefGoogle Scholar
  18. 18.
    Gould JM (1984) Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol Bioeng 26:46–52CrossRefGoogle Scholar
  19. 19.
    Karagöz P, Rocha IV, Özkan M, Angelidaki I (2012) Alkaline peroxide pretreatment of rapeseed straw for enhancing bioethanol production by same vessel saccharification and co-fermentation. Bioresour Technol 104:349–357CrossRefGoogle Scholar
  20. 20.
    National Renewable Energy Laboratory (NREL). Chemical analysis and testing laboratory analytical procedures. Accessed 14 Jan 2015
  21. 21.
    Singleton VL, Rossi SA (1965) Colorimetric of total phenolics with phosphomolibic-phosphotungstic acid reagents. J Enol Vitic 16:144–158Google Scholar
  22. 22.
    Chaabane FB, Marchal R (2013) Upgrading the hemicellulosic fraction of biomass into biofuel. Oil Gas Sci Technol 68(4):663–680CrossRefGoogle Scholar
  23. 23.
    Nieves IU, Geddes CC, Mullinnix MT, Hoffman RW, Tong Z, Castro E, Shanmugam KT, Ingram LO (2011) Injection of air into the headspace improves fermentation of phosphoric acid pretreated sugarcane bagasse by Escherichia coli MM170. Bioresour Technol 102:6959–6965CrossRefGoogle Scholar
  24. 24.
    Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRefGoogle Scholar
  25. 25.
    McIntosh S, Vancov T (2010) Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour Technol 101:6718–6727CrossRefGoogle Scholar
  26. 26.
    Kang KE, Jeong GT, Sunwoo C, Park DH (2012) Pretreatment of rapeseed straw by soaking in aqueous ammonia. Bioprocess Biosyst Eng 35:77–84CrossRefGoogle Scholar
  27. 27.
    Carvalheiro F, Silva-Fernandes T, Duarte LC, Gírio FM (2009) Wheat straw autohydrolysis: process optimization and products characterization. Appl Biochem Biotechnol 153:84–93CrossRefGoogle Scholar
  28. 28.
    Mathew AK, Chaney K, Crook M, Humphries AC (2011) Alkaline pre-treatment of oilseed rape straw for bioethanol production: Evaluation of glucose yield and pre-treatment energy consumption. Bioresour Technol 102:6547–6553CrossRefGoogle Scholar
  29. 29.
    Hoyer K, Galbe M, Zacchi G (2010) Effects of enzyme feeding strategy on ethanol yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry matter. Biotechnol Biofuels 3:14CrossRefGoogle Scholar
  30. 30.
    Stenberg K, Bollók M, Réczey K, Galbe M, Zacchi G (2000) Effect of substrate and cellulase concentration on simultaneous saccharification and fermentation of steam-pretreated softwood for ethanol production. Biotechnol Bioeng 68(2):204–210CrossRefGoogle Scholar
  31. 31.
    Koppram R, Tomás-Pejó E, Xiros C, Olsson L (2014) Lignocellulosic ethanol production at high-gravity: challenges and perspectives. Trends Biotechnol 32(1):46–53CrossRefGoogle Scholar
  32. 32.
    Hoyer K, Galbe M, Zacchi G (2009) Production of fuel ethanol from softwood by simultaneous saccharification and fermentation at high dry matter content. J Chem Technol Biotechnol 84:570–577CrossRefGoogle Scholar
  33. 33.
    López-Linares JC, Romero I, Cara C, Ruiz E, Moya M, Castro E (2014) Bioethanol production from rapeseed straw at high solids loading with different process configurations. Fuel 122:112–118CrossRefGoogle Scholar
  34. 34.
    Luo G, Talebnia F, Karakashev D, Xie L, Zhou Q, Angelidaki I (2011) Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept. Bioresour Technol 102:1433–1439CrossRefGoogle Scholar
  35. 35.
    Erdei B, Hancz D, Galbe M, Zacchi G (2013) SSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production. Biotechnol Biofuels 6:169CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Inmaculada Romero
    • 1
    Email author
  • Juan C. López-Linares
    • 1
  • Yaimé Delgado
    • 1
  • Cristóbal Cara
    • 1
  • Eulogio Castro
    • 1
  1. 1.Department of Chemical, Environmental and Materials EngineeringUniversity of JaénJaénSpain

Personalised recommendations