Skip to main content
Log in

A kinetic study of textile dyeing wastewater degradation by Penicillium chrysogenum

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The potential of Penicillium chrysogenum to decolorize azo dyes and a real industrial textile wastewater was studied. P. chrysogenum was able to decolorize and degrade three azo dyes (200 mg L−1), either independently or in a mixture of them, using glucose as a carbon source. A kinetic model for degradation was developed and it allowed predicting the degradation kinetics of the mixture of the three azo dyes. In addition, P. chrysogenum was able to decolorize real industrial wastewater. The kinetic model proposed was also able to predict the decolorization of the real wastewater. The calibration of the proposed model makes it a useful tool for future wastewater facilities’ design and for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77(3):247–255. doi:10.1016/S0960-8524(00)00080-8

    Article  CAS  Google Scholar 

  2. Solís M, Solís A, Pérez HI, Manjarrez N, Flores M (2012) Microbial decolouration of azo dyes: a review. Process Biochem 47(12):1723–1748. doi:10.1016/j.procbio.2012.08.014

    Article  Google Scholar 

  3. Kuberan T, Anburaj J, Sundaravadivelan C, Kumar P (2011) Biodegradation of azo dye by Listeria sp. Int J Environ Sci 1(7):1760–1770

    Google Scholar 

  4. Elisangela F, Andrea Z, Fabio DG, de Menezes Cristiano R, Regina DL, Artur C-P (2009) Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Int Biodeterior Biodegrad 63(3):280–288. doi:10.1016/j.ibiod.2008.10.003

    Article  CAS  Google Scholar 

  5. Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42(1):138–157. doi:10.1016/j.jtice.2010.06.006

    Article  CAS  Google Scholar 

  6. Esmaeili A, Kalantari M (2012) Bioremoval of an azo textile dye, Reactive Red 198, by Aspergillus flavus. World J Microbiol Biotechnol 28(3):1125–1131. doi:10.1007/s11274-011-0913-1

    Article  CAS  Google Scholar 

  7. Durán N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28(2):83–99. doi:10.1016/S0926-3373(00)00168-5

    Article  Google Scholar 

  8. Mester TN, Tien M (2000) Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int Biodeterior Biodegrad 46(1):51–59. doi:10.1016/S0964-8305(00)00071-8

    Article  CAS  Google Scholar 

  9. Saroj S, Kumar K, Pareek N, Prasad R, Singh RP (2014) Biodegradation of azo dyes Acid Red 183, Direct Blue 15 and Direct Red 75 by the isolate Penicillium oxalicum SAR-3. Chemosphere. doi:10.1016/j.chemosphere.2013.12.049

    Google Scholar 

  10. Aranciaga N, Durruty I, González JF, Wolski EA (2012) Aerobic biotransformation of 2, 4, 6-trichlorophenol by Penicillium chrysogenum in aqueous batch culture: degradation and residual phytotoxicity. Water SA 38(5):683–688

    Article  CAS  Google Scholar 

  11. Wolski EA, Barrera V, Castellari C, González JF (2012) Biodegradation of phenol in static cultures by Penicillium chrysogenum: catalytic abilities and residual phytotoxicity. Rev Argentina Microbiol 44:113–121

    CAS  Google Scholar 

  12. Zheng Z, Levin RE, Pinkham JL, Shetty K (1999) Decolorization of polymeric dyes by a novel Penicillium isolate. Process Biochem 34(1):31–37. doi:10.1016/S0032-9592(98)00061-2

    Article  CAS  Google Scholar 

  13. Gou M, Qu Y, Zhou J, Ma F, Tan L (2009) Azo dye decolorization by a new fungal isolate, Penicillium sp. QQ and fungal-bacterial cocultures. J Hazard Mater 170(1):314–319. doi:10.1016/j.jhazmat.2009.04.094

    Article  CAS  Google Scholar 

  14. Ramalingam SN, Shanmugapriya S, Shakthipriyadarshini S, Sadasivam S, Shanmugapraksh M (2010) Decolorization of textile dyes by Aspergillus tamarii, mixed fungal culture and Penicillium purpurogenum. J Sci Ind Res India 69:151–153

    CAS  Google Scholar 

  15. Jasińska A, Różalska S, Bernat P, Paraszkiewicz K, Długoński J (2012) Malachite green decolorization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium roridum. Int Biodeterior Biodegrad 73:33–40. doi:10.1016/j.ibiod.2012.06.025

    Article  Google Scholar 

  16. Almquist J, Cvijovic M, Hatzimanikatis V, Nielsen J, Jirstrand M (2014) Kinetic models in industrial biotechnology—improving cell factory performance. Metab Eng. doi:10.1016/j.ymben.2014.03.007

    Google Scholar 

  17. APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC

    Google Scholar 

  18. Borges Pereira R, Ciavareli Lucas G, Perina FJ, Vilela deResende ML, Alves E (2011) Potential of essential oils for the control of brown eye spot in coffee plants. Ciéncia e Agrotecnologia 35:115–123

    Article  Google Scholar 

  19. Perlatti B, da Silva MF, Fernandes JB, Forim MR (2012) Validation and application of HPLC–ESI–MS/MS method for the quantification of RBBR decolorization, a model for highly toxic molecules, using several fungi strains. Bioresour Technol 124:37–44. doi:10.1016/j.biortech.2012.08.032

    Article  CAS  Google Scholar 

  20. Alvarez-Cohen L, McCarty PL (1991) Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl Environ Microbiol 57(4):1031–1037

    CAS  Google Scholar 

  21. Bielefeldt AR, Stensel HD (1999) Modeling competitive inhibition effects during biodegradation of BTEX mixtures. Water Res 33(3):707–714. doi:10.1016/S0043-1354(98)00256-5

    Article  CAS  Google Scholar 

  22. Gérard C, Tyson John J, Novák B (2013) Minimal models for cell-cycle control based on competitive inhibition and multisite phosphorylations of Cdk substrates. Biophys J 104(6):1367–1379. doi:10.1016/j.bpj.2013.02.012

    Article  Google Scholar 

  23. Baccar R, Blánquez P, Bouzid J, Feki M, Attiya H, Sarrà M (2011) Decolorization of a tannery dye: from fungal screening to bioreactor application. Biochem Eng J 56(3):184–189. doi:10.1016/j.bej.2011.06.006

    Article  CAS  Google Scholar 

  24. Osma JF, Toca-Herrera JL, Rodríguez-Couto S (2010) Transformation pathway of Remazol Brilliant Blue R by immobilised laccase. Bioresour Technol 101(22):8509–8514

    Article  CAS  Google Scholar 

  25. Levin L, Grassi E, Carballo R (2012) Efficient azoic dye degradation by Trametes trogii and a novel strategy to evaluate products released. Int Biodeterior Biodegrad 75:214–222. doi:10.1016/j.ibiod.2012.10.005

    Article  CAS  Google Scholar 

  26. Zille A, Ramalho P, Tzanov T, Millward R, Aires V, Cardoso MH, Ramalho MT, Gübitz GM, Cavaco-Paulo A (2004) Predicting dye biodegradation from redox potentials. Biotechnol Prog 20(5):1588–1592. doi:10.1021/bp049963i

    Article  CAS  Google Scholar 

  27. Bergsten-Torralba LR, Nishikawa MM, Baptista DF, Magalhães DP, Silva Md (2009) Decolorization of different textile dyes by Penicillium simplicissimum and toxicity evaluation after fungal treatment. Br J Microbiol 40:808–817

    Article  CAS  Google Scholar 

  28. Qing C (1989) Chemistry of dye intermediates. Press Beijing, China

    Google Scholar 

  29. Feng W, Nansheng D, Helin H (2000) Degradation mechanism of azo dye C. I. reactive red 2 by iron powder reduction and photooxidation in aqueous solutions. Chemosphere 41(8):1233–1238. doi:10.1016/S0045-6535(99)00538-X

    Article  CAS  Google Scholar 

  30. Socrates G (1994) Infrared characteristic group frequencies. Tables and charts. Wiley, UK

    Google Scholar 

  31. Wojciechowska M, Wojciechowski G, Wasiak W (2003) Spectroscopic and semiempirical studies of the phototropic species of 8-amino-5,8′-azo-bis-naphthalene-2-sulphonic acid. J Mol Struct 658:125–133

    Article  CAS  Google Scholar 

  32. Phugare SS, Kalyani DC, Surwase SN, Jadhav JV (2011) Ecofriendly degradation, decolorization and detoxification of textile effluent by a developed bacterial consortium. Ecotox Environ Safe 74:1288–1296

    Article  CAS  Google Scholar 

  33. Kudlich M, Hetheridge MJ, Knackmuss HJ, Stolz A (1999) Autoxidation reactions of different aromatic o-aminohydroxynaphthalenes that are formed during the anaerobic reduction of sulfonated azo dyes. Environ Sci Technol 33:896–901

    Article  CAS  Google Scholar 

  34. Yuan J, Liu Y, Geng J (2010) Stoichiometric balance based macrokinetic model for Penicillium chrysogenum in fed-batch fermentation. Process Biochem 45(4):542–548. doi:10.1016/j.procbio.2009.11.015

    Article  CAS  Google Scholar 

  35. Paul GC, Syddall MT, Kent CA, Thomas CR (1998) A structured model for penicillin production on mixed substrates. Biochem Eng J 2(1):11–21. doi:10.1016/S1369-703X(98)00012-6

    Article  CAS  Google Scholar 

  36. Wolski E, Durruty I, Haure P, González J (2012) Penicillium chrysogenum;: phenol degradation abilities and kinetic model. Water Air Soil Pollut 223(5):2323–2332. doi:10.1007/s11270-011-1026-z

    Article  CAS  Google Scholar 

  37. Donoso-Bravo A, Mailier J, Martin C, Rodríguez J, Aceves-Lara CA, Wouwer AV (2011) Model selection, identification and validation in anaerobic digestion: a review. Water Res 45(17):5347–5364

    Article  CAS  Google Scholar 

  38. Béline F, Boursier H, Daumer ML, Guiziou F, Paul E (2007) Modelling of biological processes during aerobic treatment of piggery wastewater aiming at process optimisation. Bioresour Technol 98(17):3298–3308. doi:10.1016/j.biortech.2006.07.004

    Article  Google Scholar 

  39. Durruty I, Ayude MA (2014) Modeling of an industrial anaerobic digester: a case study for undergraduate students. Chem Eng Educ Spring, 71–78

Download references

Acknowledgments

This research was supported by the Universidad Nacional de Mar del Plata, the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT). The authors would like to thank Gabriela Fioramonti from Gama S. A. for kindly providing the azo dyes and wastewater samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Alejandra Wolski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durruty, I., Fasce, D., González, J.F. et al. A kinetic study of textile dyeing wastewater degradation by Penicillium chrysogenum . Bioprocess Biosyst Eng 38, 1019–1031 (2015). https://doi.org/10.1007/s00449-014-1344-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1344-9

Keywords

Navigation