Advertisement

Bioprocess and Biosystems Engineering

, Volume 37, Issue 12, pp 2567–2577 | Cite as

Rapid assessment of oxygen transfer impact for Corynebacterium glutamicum

  • Friedrich Käß
  • Arjun Prasad
  • Jana Tillack
  • Matthias Moch
  • Heiner Giese
  • Jochen Büchs
  • Wolfgang Wiechert
  • Marco Oldiges
Original Paper

Abstract

Oxygen supply is crucial in industrial application of microbial systems, such as Corynebacterium glutamicum, but oxygen transfer is often neglected in early strain characterizations, typically done under aerobic conditions. In this work, a new procedure for oxygen transfer screening is presented, assessing the impact of maximum oxygen transfer conditions (OTRmax) within microtiter plate-based cultivation for enhanced throughput. Oxygen-dependent growth and productivity were characterized for C. glutamicum ATCC13032 and C. glutamicum DM1933 (lysine producer). Biomass and lysine product yield are affected at OTRmax below 14 mmol L−1 h−1 in a standardized batch process, but not by further increase of OTRmax above this threshold value indicating a reasonable tradeoff between power input and oxygen transfer capacity OTRmax. The described oxygen transfer screening allows comparative determination of metabolic robustness against oxygen transfer limitation and serves identification of potential problems or opportunities later created during scale-up.

Keywords

BioLector Maximum oxygen transfer capacity Oxygen limitation Bioprocess optimization Multi-parameter calibration RAMOS 

Notes

Acknowledgments

The authors thank the Bundesministerium für Bildung und Forschung (BMBF) for funding in the cluster project “Corynebacterium: Improving flexibility and fitness for industrial production” (Grant No. 0315589A). We also thank Dr. Frank Kensy, m2p-Labs (Baesweiler, Germany) for various support and background information on BioLector mass transfer properties as well as Evonik Industries AG for valuable cooperation within the project.

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

449_2014_1234_MOESM1_ESM.tif (219 kb)
Supplementary Figure 6: Schematic principle of oxygen transfer screening in microtiter plates: at fixed cultivation conditions in shaken bioreactors, the maximum oxygen transfer capacity (OTRmax) is a function of gas-phase oxygen content and filling volume. By varying both parameters, a broad range of oxygen transfer conditions can be assessed within a small number of cultivations. (TIFF 218 kb)
449_2014_1234_MOESM2_ESM.tif (413 kb)
Supplementary Figure 7: Online biomass determination in BioLector microplate cultivation is based on backscatter of light excitation, which is linearly dependent on biomass concentration at constant filling volume of the cultivation well (top). The correlation is more complex for changing filling volume at constant biomass (bottom), where secondary effects (e.g. surface reflection, changes in geometric properties) can have an influence on backscatter signal. (TIFF 412 kb)

References

  1. 1.
    Russell JB, Cook GM (1995) Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev 59(1):48–62Google Scholar
  2. 2.
    Farr SB, Kogoma T (1991) Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol Rev 55(4):561–585Google Scholar
  3. 3.
    Zimmermann HF, Anderlei T, Büchs J et al (2006) Oxygen limitation is a pitfall during screening for industrial strains. Appl Microbiol Biotechnol 72(6):1157–1160. doi: 10.1007/s00253-006-0414-6 CrossRefGoogle Scholar
  4. 4.
    Anderlei T, Büchs J (2001) Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochem Eng J 7(2):157–162CrossRefGoogle Scholar
  5. 5.
    Liu Y, Wu J, Ho K (2006) Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Biochem Eng J 27(3):331–335. doi: 10.1016/j.bej.2005.08.031 CrossRefGoogle Scholar
  6. 6.
    Losen M, Frölich B, Pohl M et al (2004) Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnol Prog 20(4):1062–1068. doi: 10.1021/bp034282t CrossRefGoogle Scholar
  7. 7.
    Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27(2):153–176. doi: 10.1016/j.biotechadv.2008.10.006 CrossRefGoogle Scholar
  8. 8.
    Klöckner W, Büchs J (2012) Advances in shaking technologies. Trends Biotechnol 30(6):307–314. doi: 10.1016/j.tibtech.2012.03.001 CrossRefGoogle Scholar
  9. 9.
    Anderlei T, Zang W, Papaspyrou M et al (2004) Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochem Eng J 17(3):187–194. doi: 10.1016/S1369-703X(03)00181-5 CrossRefGoogle Scholar
  10. 10.
    Bareither R, Pollard D (2011) A review of advanced small-scale parallel bioreactor technology for accelerated process development: current state and future need. Biotechnol Prog 27(1):2–14. doi: 10.1002/btpr.522 CrossRefGoogle Scholar
  11. 11.
    Duetz WA (2007) Microtiter plates as mini-bioreactors: miniaturization of fermentation methods. Trends Microbiol 15(10):469–475. doi: 10.1016/j.tim.2007.09.004 CrossRefGoogle Scholar
  12. 12.
    Hortsch R, Weuster-Botz D (2010) Milliliter-scale stirred tank reactors for the cultivation of microorganisms. Adv Appl Microbiol 73:61–82. doi: 10.1016/S0065-2164(10)73003-3 CrossRefGoogle Scholar
  13. 13.
    Isett K, George H, Herber W et al (2007) Twenty-four-well plate miniature bioreactor high-throughput system: assessment for microbial cultivations. Biotechnol Bioeng 98(5):1017–1028. doi: 10.1002/bit.21484 CrossRefGoogle Scholar
  14. 14.
    Rohe P, Venkanna D, Kleine B et al (2012) An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform. Microb Cell Fact 11(1):144. doi: 10.1186/1475-2859-11-144 CrossRefGoogle Scholar
  15. 15.
    Kensy F, Zang E, Faulhammer C et al (2009) Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microb Cell Fact 8:31. doi: 10.1186/1475-2859-8-31 CrossRefGoogle Scholar
  16. 16.
    Funke M, Diederichs S, Kensy F et al (2009) The baffled microtiter plate: increased oxygen transfer and improved online monitoring in small scale fermentations. Biotechnol Bioeng 103(6):1118–1128. doi: 10.1002/bit.22341 CrossRefGoogle Scholar
  17. 17.
    Funke M, Buchenauer A, Mokwa W et al (2010) Bioprocess control in microscale: scalable fermentations in disposable and user-friendly microfluidic systems. Microb Cell Fact 9:86. doi: 10.1186/1475-2859-9-86 CrossRefGoogle Scholar
  18. 18.
    Kensy F, Engelbrecht C, Büchs J (2009) Scale-up from microtiter plate to laboratory fermenter: evaluation by online monitoring techniques of growth and protein expression in Escherichia coli and Hansenula polymorpha fermentations. Microb Cell Fact 8:68. doi: 10.1186/1475-2859-8-68 CrossRefGoogle Scholar
  19. 19.
    van Ooyen J, Noack S, Bott M et al (2012) Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng 109(8):2070–2081. doi: 10.1002/bit.24486 CrossRefGoogle Scholar
  20. 20.
    Bartek T, Blombach B, Zönnchen E et al (2009) Importance of NADPH supply for improved l-valine formation in Corynebacterium glutamicum. Biotechnol Progr 26(2):361–371. doi: 10.1002/btpr.345 Google Scholar
  21. 21.
    Blombach B, Schreiner ME, Bartek T et al (2008) Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 79(3):471–479. doi: 10.1007/s00253-008-1444-z CrossRefGoogle Scholar
  22. 22.
    Jojima T, Fujii M, Mori E et al (2010) Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid l-alanine under oxygen deprivation. Appl Microbiol Biotechnol 87(1):159–165. doi: 10.1007/s00253-010-2493-7 CrossRefGoogle Scholar
  23. 23.
    Inui M, Murakami S, Okino S et al (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7(4):182–196. doi: 10.1159/000079827 CrossRefGoogle Scholar
  24. 24.
    Litsanov B, Brocker M, Bott M (2012) Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Appl Environ Microbiol 78(9):3325–3337. doi: 10.1128/AEM.07790-11 CrossRefGoogle Scholar
  25. 25.
    Potzkei J, Kunze M, Drepper T et al (2012) Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor. BMC Biol 10:28. doi: 10.1186/1741-7007-10-28 CrossRefGoogle Scholar
  26. 26.
    Chmiel H (ed) (2011) Bioprozesstechnik, 3rd edn. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  27. 27.
    Hermann R, Walther N, Maier U et al (2001) Optical method for the determination of the oxygen-transfer capacity of small bioreactors based on sulfite oxidation. Biotechnol Bioeng 74(5):355–363CrossRefGoogle Scholar
  28. 28.
    Samorski M, Müller-Newen G, Büchs J (2005) Quasi-continuous combined scattered light and fluorescence measurements: a novel measurement technique for shaken microtiter plates. Biotechnol Bioeng 92(1):61–68. doi: 10.1002/bit.20573 CrossRefGoogle Scholar
  29. 29.
    Blombach B, Hans S, Bathe B et al (2009) Acetohydroxyacid synthase, a novel target for improvement of l-lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75(2):419–427. doi: 10.1128/AEM.01844-08 CrossRefGoogle Scholar
  30. 30.
    Keilhauer C, Eggeling L, Sahm H (1993) Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175(17):5595–5603Google Scholar
  31. 31.
    Kensy F, Zimmermann HF, Knabben I et al (2005) Oxygen transfer phenomena in 48-well microtiter plates: determination by optical monitoring of sulfite oxidation and verification by real-time measurement during microbial growth. Biotechnol Bioeng 89(6):698–708. doi: 10.1002/bit.20373 CrossRefGoogle Scholar
  32. 32.
    Maier U, Losen M, Büchs J (2004) Advances in understanding and modeling the gas–liquid mass transfer in shake flasks. Biochem Eng J 17(3):155–167. doi: 10.1016/S1369-703X(03)00174-8 CrossRefGoogle Scholar
  33. 33.
    Bott M, Niebisch A (2003) The respiratory chain of Corynebacterium glutamicum. J Biotechnol 104(1–3):129–153CrossRefGoogle Scholar
  34. 34.
    Shinfuku Y, Sorpitiporn N, Sono M et al (2009) Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb Cell Fact 8:43. doi: 10.1186/1475-2859-8-43 CrossRefGoogle Scholar
  35. 35.
    Neuner A, Wagnera I, Siekerb T, Ulber R, Schneider K, Peifer S, Heinzle E (2013) Production of l-lysine on different silage juices using genetically engineered Corynebacterium glutamicum. J Biotechnol 163:217–224. doi: 10.1016/j.jbiotec.2012.07.190 CrossRefGoogle Scholar
  36. 36.
    Ensari S, Lim HC (2003) Kinetics of l-lysine fermentation: a continuous culture model incorporating oxygen uptake rate. Appl Microbiol Biotechnol 62(1):35–40. doi: 10.1007/s00253-003-1266-y CrossRefGoogle Scholar
  37. 37.
    Funke M, Buchenauer A, Schnakenberg U et al (2010) Microfluidic biolector-microfluidic bioprocess control in microtiter plates. Biotechnol Bioeng 107(3):497–505. doi: 10.1002/bit.22825 CrossRefGoogle Scholar
  38. 38.
    Long Q, Liu X, Yang Y, Li L, Harvey L, McNeil B, Bai Z (2014) The development and application of high throughput cultivation technology in bioprocess development. J Biotechnol. doi: 10.1016/j.biotec.2014.03.028 Google Scholar
  39. 39.
    Gebhardt G, Hortsch R, Kaufmann K, Arnold M, Weuster-Botz D (2011) A new microfluidic concept for parallel operated millilitre-scale stirred-tank bioreactors. Biotechnol Prog 27:684–690CrossRefGoogle Scholar
  40. 40.
    Scheidle M, Jeude M, Dittrich B et al (2010) High-throughput screening of Hansenula polymorpha clones in the batch compared with the controlled-release fed-batch mode on a small scale. FEMS Yeast Res 10(1):83–92. doi: 10.1111/j.1567-1364.2009.00586.x CrossRefGoogle Scholar
  41. 41.
    Glazyrina J, Krause M, Junne S et al (2012) Glucose-limited high cell density cultivations from small to pilot plant scale using an enzyme-controlled glucose delivery system. N Biotechnol 29(2):235–242. doi: 10.1016/j.nbt.2011.11.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Friedrich Käß
    • 1
  • Arjun Prasad
    • 1
  • Jana Tillack
    • 1
  • Matthias Moch
    • 1
  • Heiner Giese
    • 2
  • Jochen Büchs
    • 2
  • Wolfgang Wiechert
    • 1
  • Marco Oldiges
    • 1
  1. 1.Forschungszentrum Jülich GmbHInstitute of Bio- and Geosciences, IBG-1: BiotechnologyJülichGermany
  2. 2.RWTH Aachen UniversityAVT Biochemical EngineeringAachenGermany

Personalised recommendations